設(shè)項(xiàng)數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項(xiàng)的和分別為Sn、Tn、Un.已知:an-bn=2n  (1≤n≤k, n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項(xiàng)公式;
(2)若k=4,求S4和T4的值,并寫出兩對(duì)符合題意的數(shù)列{an}、{bn};
(3)對(duì)于固定的k,求證:符合條件的數(shù)列對(duì)({an},{bn})有偶數(shù)對(duì).
分析:(1)當(dāng)n=1時(shí),c1=U1=4;當(dāng)n≥2時(shí),易求cn=Un-Un-1=2+2n-1,從而可得數(shù)列{cn}的通項(xiàng)公式;
(2)依題意,可求得S4-T4=20,S4+T4=72,從而可求得S4和T4的值,繼而可寫出兩對(duì)符合題意的數(shù)列{an}、{bn};
(3)令dn=4k+2-bn,en=4k+2-an(1≤n≤k,n∈N*),可求得dn-en=(4k+2-bn)-(4k+2-an)=an-bn=2n,結(jié)合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k}⇒數(shù)列對(duì)({an},{bn})與({dn},{en})成對(duì)出現(xiàn),從而可證得結(jié)論.
解答:解:(1)n=1時(shí),c1=U1=4,
當(dāng)n≥2時(shí),cn=Un-Un-1=2n+2n-2(n-1)-2n-1=2+2n-1,
c1=4不適合該式,
故cn=
4,  n=1
2+2n-1,  2≤n≤k
,
(2)S4-T4=(a1+a2+a3+a4)-(b1+b2+b3+b4
=(a1-b1)+(a2-b2)+(a3-b3)+(a4-b4
=2+4+6+8=20,
又S4+T4=(a1+a2+a3+a4)+(b1+b2+b3+b4
=2+4+6+8+10+12+14+16
=72,
∴S4=46,T4=26;            
數(shù)列{an}、{bn}可以為:
①16,10,8,12;14,6,2,4 ②14,6,10,16;12,2,4,8
③6,16,14,10;4,12,8,2 ④4,14,12,16;2,10,6,8
⑤4,12,16,14;2,8,10,6 ⑥16,8,12,10;14,4,6,2;    
(3)令dn=4k+2-bn,en=4k+2-an(1≤n≤k,n∈N*),
dn-en=(4k+2-bn)-(4k+2-an)=an-bn=2n;
又{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k},
得{4k+2-a1,4k+2-a2,…,4k+2-ak,4k+2-b1,4k+2-b2,…,4k+2-bk}
={2,4,6,…,4k};
∴數(shù)列對(duì)({an},{bn})與({dn},{en})成對(duì)出現(xiàn). 
假設(shè)數(shù)列{an}與{dn}相同,則由d2=4k+2-b2=a2及a2-b2=4,得a2=2k+3,b2=2k-1,均為奇數(shù),矛盾!
故符合條件的數(shù)列對(duì)({an},{bn})有偶數(shù)對(duì).
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查構(gòu)造函數(shù)思想,考查抽象思維與創(chuàng)新思維的綜合運(yùn)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)項(xiàng)數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項(xiàng)的和分別為Sn、Tn、Un.已知集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項(xiàng)公式;
(2)若Sn-Tn=2n+2n(1≤n≤k,n∈N*),試研究k=4和k≥6時(shí)是否存在符合條件的數(shù)列對(duì)({an},{bn}),并說(shuō)明理由;
(3)若an-bn=2n  (1≤n≤k, n∈N*),對(duì)于固定的k,求證:符合條件的數(shù)列對(duì)({an},{bn})有偶數(shù)對(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案