(1)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若對(duì)于任意的a∈[,2],不等式f(x)≤10在[,1]上恒成立,求b的取值范圍.
本小題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、解不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力、綜合分析和解決問題的能力.
(1)解:f′(x)=1,由導(dǎo)數(shù)的幾何意義得f′(2)=3,于是a=-8.
由切點(diǎn)P(2,f(2))在直線y=3x+1上可得-2+b=7,解得b=9.
所以函數(shù)f(x)的解析式為f(x)=x+9.
(2)解:f′(x)=1.
當(dāng)a≤0時(shí),顯然f′(x)>0(x≠0).
這時(shí)f(x)在(-∞,0),(0,+∞)內(nèi)是增函數(shù).
當(dāng)a>0時(shí),令f′(x)=0,
解得x=±.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,-) | - | (-,0) | (0,) | (,+∞) | |
f′(x) | + | 0 | - | - | 0 | + |
f(x) | ?↗ | 極大值 | ?↘ | ↘ | 極小值 | ↗ |
所以f(x)在(-∞,-),(,+∞)內(nèi)是增函數(shù),
在(-,0),(0,)內(nèi)是減函數(shù).
(3)解:由(2)知,f(x)在[,1]上的最大值為f()與f(1)中的較大者,對(duì)于任意的a∈[,2],不等式f(x)≤10在[,1]上恒成立,當(dāng)且僅當(dāng)即
對(duì)任意的a∈[,2]成立.
從而得b≤,所以滿足條件的b的取值范圍是(-∞,].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com