設(shè)數(shù)列{an}的前n項和Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,則n的值為(  )
A、9B、8C、7D、6
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由裂項求和法推導(dǎo)出Sn =
n
n+1
,由此利用Sn•Sn+1=
3
4
,能求出結(jié)果.
解答: 解:∵Sn =
1
2
+
1
6
+
1
12
+…+
1
n(n+1)

=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
,
Sn•Sn+1=
3
4
,
n
n+1
n+1
n+2
=
n
n+2
=
3
4
,
∴4n=3n+6,解得n=6.
故選:D.
點評:本題考查數(shù)列的前n項和的求法及應(yīng)用,是中檔題,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
1-x2
|x+2|-2
;
(2)f(x)=(
1
2x-1
+
1
2
)•x
;
(3)f(x)=lg(
x2+1
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的頂點在坐標原點,對稱軸為y軸,若過點M(0,1)任作一直線交拋物線C于A(x1,y1),B(x2,y2)兩點,且x1•x2=-4,則拋物線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.
(Ⅰ)解不等式f(x)<-1;
(Ⅱ)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
1
-1
(|x|-1)dx
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“(a-b)a2>0”是“a>b”的( 。
A、充分非必要條件
B、必要非充分條件
C、非充分非必要條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別是a、b、c.若asinA+csinC-
3
asinC=bsinB.則角B等于(  )
A、
6
B、
3
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β是兩個不重合的平面,m、n是兩條不重合的直線,則以下結(jié)論錯誤的是( 。
A、若α∥β,m?α,則 m∥β
B、若m∥α,m∥β,α∩β=n,則 m∥n
C、若m?α,n?α,m∥β,n∥β,則α∥β
D、若m∥α,m⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=90°,AC=2AB,PA垂直△ABC所在的平面,PC與△ABC所在的平面成30°角,點D在線段PC上,點E在線段BC上.
(Ⅰ)若AD⊥PC,求證:BD⊥PC;
(Ⅱ)若PD:PC=1:4,EC:BC=1:4,求二面角B-AD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案