Processing math: 100%
3.以橢圓9x2+5y2=45的焦點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)M(2,6)的橢圓的標(biāo)準(zhǔn)方程是( �。�
A.x212+y28=1B.y212+x28=1C.x26+y24=1D.y26+y24=1

分析 將橢圓9x2+5y2=45化成標(biāo)準(zhǔn)方程,求出c=2得焦點(diǎn)坐標(biāo)為(0,2),(0,-2),由此設(shè)所求橢圓方程為y2a2+x22=1(a>b>0),結(jié)合題意建立關(guān)于a、b的方程組,解出a、b的值,即得所求橢圓的標(biāo)準(zhǔn)方程.

解答 解:橢圓9x2+5y2=45化成標(biāo)準(zhǔn)方程,得x25+y29=1,
∴橢圓的焦點(diǎn)在y軸,且c2=9-5=4,得c=2,焦點(diǎn)為(0,2),(0,-2).
∵所求橢圓經(jīng)過(guò)點(diǎn)M(2,6),且與已知橢圓有共同的焦點(diǎn),
∴設(shè)橢圓方程為y2a2+x22=1(a>b>0),
可得{a22=462a2+222=1,解得a2=12,b2=8,
因此所求的橢圓方程為y212+x28=1
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線l經(jīng)過(guò)A,B兩點(diǎn),且A(2,1),AB=(4,2).
(1)求直線l的方程;
(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點(diǎn),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某幾何體側(cè)視圖與正視圖相同,則它的表面積為( �。�
A.12+6πB.16+6πC.16+10πD.8+6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線方程為x-2y-2=0,求f(x)的極值;
(Ⅱ)若b=1,是否存在a∈R,使f(x)的極值大于零?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若“x<a”是“|2x-5|≤4”的必要條件,則實(shí)數(shù)a的取值范圍是(  )
A.12B.12]C.92+D.[92+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=2x+ax+1在區(qū)間(-∞,-1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為(  )
A.(2,+∞)B.(0,2)C.[0,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)f(x)對(duì)于x>0有意義,且滿足條件f(2)=1,f(xy)=f(x)+f(y),f(x)是減函數(shù).
(1)證明:f(1)=0
(2)若f(x)+f(x-3)≥2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2b2ccosA=2acosC
(1)求角A的大��;
(2)若a=1,cosB=45,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,四邊形ABCD,平面PDC⊥平面ABCD,AB=6,BC=3,點(diǎn)E是CD邊的中點(diǎn).求二面角P-AD-C的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案