【題目】如圖,三棱錐中,點在以為直徑的圓上,平面平面,點在線段上,且,,,,點為的重心,點為的中點.
(1)求證:平面;
(2)求點到平面的距離.
【答案】(1)見解析;(2)
【解析】
試題(1)連接,并延長交于點,連接,根據(jù)重心所具有的性質(zhì)結(jié)合相似三角形可得,結(jié)合線面平行判定定理得結(jié)論;(2)根據(jù)圓的性質(zhì),由面面垂直性質(zhì)定理可得平面,計算出三棱錐的體積,利用等體積法可求出點到平面的距離.
試題解析:(1)如圖,連接,并延長交于點,連接.
因為為的重心,所以為的中點,且.
又,即,
所以,又因為平面,平面,
所以平面.
(2)因為點在以為直徑的圓上,所以,
又因為平面平面,平面平面,所以平面.
在中,,,
如圖,連接CQ,則,且,
所以的面積.
故三棱錐的體積.
因為平面,所以,
又因為,,所以平面,故.
在中,.
所以的面積.
設(shè)點到平面的距離為,即點到平面的距離為,
則三棱錐的體積.
顯然,即,解得,即點到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體中,,平面平面,,且.
(1)證明:平面;
(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且在上單調(diào)遞增,且函數(shù)與的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.
D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極值,不等式對恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓與軸交于、兩點(點在點的左側(cè)),、是分別過、點的圓的切線,過此圓上的另一個點(點是圓上任一不與、重合的動點)作此圓的切線,分別交、于、兩點,且、兩直線交于點.
()設(shè)切點坐標(biāo)為,求證:切線的方程為.
()設(shè)點坐標(biāo)為,試寫出與的關(guān)系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的兩個焦點,,設(shè),分別是橢圓的上、下頂點,且四邊形的面積為,其內(nèi)切圓周長為.
(1)求橢圓的方程;
(2)當(dāng)時,,為橢圓上的動點,且,試問:直線是否恒過一定點?若是,求出此定點坐標(biāo),若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com