(本小題15分)已知,是實(shí)數(shù),方程有兩個(gè)實(shí)根,,數(shù)列滿足,,
(Ⅰ)求數(shù)列的通項(xiàng)公式(用,表示);
(Ⅱ)若,,求的前項(xiàng)和.
,
解析方法一:
(Ⅰ)由韋達(dá)定理知,又,所以
,
整理得
令,則.所以是公比為的等比數(shù)列.
數(shù)列的首項(xiàng)為:
.
所以,即.所以.
①當(dāng)時(shí),,,變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/6/igs8k.gif" style="vertical-align:middle;" />.整理得,,.所以,數(shù)列成公差為的等差數(shù)列,其首項(xiàng)為.所以
.
于是數(shù)列的通項(xiàng)公式為
;……………………………………………………………………………5分
②當(dāng)時(shí),,
.
整理得
,.
所以,數(shù)列成公比為的等比數(shù)列,其首項(xiàng)為.所以.
于是數(shù)列的通項(xiàng)公式為.………………………………………………10分
(Ⅱ)若,,則,此時(shí).由第(Ⅰ)步的結(jié)果得,數(shù)列的通項(xiàng)公式為,所以,的前項(xiàng)和為
以上兩式相減,整理得
所以.……………………………………………………………………………15分
方法二:
(Ⅰ)由韋達(dá)定理知,又,所以
,.
特征方程的兩個(gè)根為,.
①當(dāng)時(shí),通項(xiàng)由,得
解得.故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題15分)已知函數(shù) (
(1)若函數(shù)在處有極值為,求的值;
(2)若對(duì)任意,在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三?荚囄目茢(shù)學(xué)試題 題型:解答題
(本小題15分)已知函數(shù)(
(1)若函數(shù)在處有極值為,求的值;
(2)若對(duì)任意,在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三?荚囄目茢(shù)學(xué)試題 題型:解答題
(本小題15分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),且.
(1)求拋物線的方程;
(2)過點(diǎn)作軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題15分)已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),
在(-∞,-2)上為減函數(shù).
(1)求f(x)的表達(dá)式;
(2)若當(dāng)x∈時(shí),不等式f(x)<m恒成立,求實(shí)數(shù)m的值;
(3)是否存在實(shí)數(shù)b使得關(guān)于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,若存在,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com