19.等比數(shù)列{an}的前n項(xiàng)和為S„,已知S1,S3,S2,成等差數(shù)列.
(1)求{an}的公比q;
(2)等差數(shù)列{bn}中,b5=9,公差d=4q,求數(shù)列{bn}的前n項(xiàng)和Tn的最大值.

分析 (1)由S1,S3,S2,成等差數(shù)列,可得S1+S2=2S3,化為:2a3=-a2,可得q=$\frac{{a}_{3}}{{a}_{2}}$.
(2)d=4q=-2,b5=9,解得b1.利用等差數(shù)列的求和公式可得Tn,再利用二次函數(shù)的性質(zhì)即可得出.

解答 解:(1)∵S1,S3,S2,成等差數(shù)列,∴S1+S2=2S3,
∴2a1+a2=2(a1+a2+a3),化為:2a3=-a2,
∴q=$\frac{{a}_{3}}{{a}_{2}}$=$-\frac{1}{2}$.
(2)d=4q=-2,
∴b1-2×4=9,解得b1=17.
∴Tn=17n+$\frac{n(n-1)}{2}×(-2)$=-n2+18n=-(n-9)2+81,
當(dāng)n=9時(shí),Tn取得最大值81.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、二次函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若經(jīng)過(guò)(a,-3)和(1,2)兩點(diǎn)的直線的傾斜角為135°,則a的值為( 。
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:Cn0+2Cn1+22Cn2+…+2nCnn=3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若a=log43,則4a=3;2a+2-a=$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{-1+i}{i}$對(duì)應(yīng)的點(diǎn)位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}是等比數(shù)列,a3,a7是方程x2-5x+4=0的兩根,則a5=( 。
A.2B.-2C.±2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)k為實(shí)數(shù)
(1)$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,-5)若$\overrightarrow{a}$∥$\overrightarrow$,求k;
(2)在(1)的條件下,數(shù)列{an}滿足an=$\frac{2kn}{5•{3}^{n}}$,求a1+a2+a3+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.能夠把圓O:x2+y2=4的周長(zhǎng)和面積同時(shí)分為相等的兩部分的函數(shù)f(x)稱為圓O的“親和函數(shù)”,下列函數(shù)不是圓O的“親和函數(shù)”的是( 。
A.f(x)=x3+sinxB.f(x)=ln$\frac{1-x}{1+x}$C.f(x)=$\frac{{{e^x}+{e^{-x}}}}{2}$D.f(x)=tan3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A(1,1,1),B(-3,-3,-3),點(diǎn)P在x軸上,且|PA|=|PB|,則點(diǎn)P的坐標(biāo)為( 。
A.(-3,0,0)B.(-4,0,0)C.(0,0,-3)D.(0,-3,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案