精英家教網 > 高中數學 > 題目詳情

【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點),若GD⊥EF,則線段DF的長度的取值范圍為(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

【答案】A
【解析】解:建立如圖所示的空間直角坐標系,則A(0,0,0),E(0,1, ), G( ,0,1),F(x,0,0),D(0,y,0)
由于GD⊥EF,所以x+2y﹣1=0
DF= =
當y= 時,線段DF長度的最小值是
當y=1時,線段DF長度的最大值是 1
而不包括端點,故y=1不能。
故選:A.

根據直三棱柱中三條棱兩兩垂直,本題考慮利用空間坐標系解決.建立如圖所示的空間直角坐標系,設出F、D的坐標,利用GD⊥EF求得關系式,寫出DF的表達式,然后利用二次函數求最值即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】等比數列{an}的各項均為正數,且
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an , 求數列 的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn(n∈N*),滿足Sn=2an﹣1.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足 ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: ,點P(4,0),過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點. (Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:以坐標原點O為圓心與PA相切的圓,必與直線PB相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長軸的兩個端點分別為A,B,點P在直線x=1上運動,直線PA,PB分別與橢圓C相交于M,N兩個不同的點,求證:直線MN與x軸的交點為定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(Ⅰ)求證:A1O∥平面AB1C;
(Ⅱ)求銳二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 為自然對數的底數,若對任意的 ,總存在唯一的 ,使得 成立,則實數 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 (b≠0).
(1)若函數f(x)在定義域上是單調函數,求實數b的取值范圍;
(2)求函數f(x)的極值點;
(3)令b=1, ,設A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點,其中﹣1<x1<x2<x3 . 求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知I為△ABC的內心,cosA= ,若 =x +y ,則x+y的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案