設(shè)z=2x+y,其中x,y滿(mǎn)足
x+y-1≤0
x-y+1≥0
k≤y≤0
,若z的最大值為6,則k的值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),由目標(biāo)函數(shù)的最大值為6求得k的值.
解答: 解:由約束條件
x+y-1≤0
x-y+1≥0
k≤y≤0
作出可行域如圖,

聯(lián)立
y=k
x+y-1=0
,解得C(1-k,k).
由圖可知,z=2x+y取得最大值的最優(yōu)解為C(1-k,k),
則2(1-k)+k=6,解得:k=-4.
故答案為:-4.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),拋物線y2=4cx(c>0)的準(zhǔn)線交該雙曲線于A,B兩點(diǎn),若△ABF是銳角三角形且c2=a2+b2,則該雙曲線離心率e的取值范圍是( 。
A、(1,
3
)
B、(1+
2
,+∞)
C、(
3
,2
2
)
D、(1,1+
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=22x+2xa+a+1有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=axn-lnx-1(n∈N+,n≥2,a>1)是否存在a,使得f(x)存在兩個(gè)零點(diǎn)x1,x2,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)正方體的表面積為S1,其外接球的表面積為S2,則
S1
S2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4cos4x-2cos2x-1
cos2x

(Ⅰ)求f(-
11π
12
)的值;
(Ⅱ)當(dāng)x∈[0,
π
4
)時(shí),求g(x)=f(x)+sin2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
3x+2y-6≥0
2x-y+2≥0
1≤x≤2
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)在x=3處取最大值,則( 。
A、f(x-3)一定是奇函數(shù)
B、f(x-3)一定是偶函數(shù)
C、f(x+3)一定是奇函數(shù)
D、f(x+3)一定是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
x→α
sinx-sinα
x-α

查看答案和解析>>

同步練習(xí)冊(cè)答案