考點(diǎn):函數(shù)的零點(diǎn),函數(shù)解析式的求解及常用方法,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由于f(x)的圖象關(guān)于x=-1對稱,可得f(x)為二次函數(shù),a=0,且 b=c,故有f(x)=
(1+x)(bx+b).再根據(jù)f(1)=2,求得b=1,可得f(x)的解析式.
(2)f(x)與g(x)的圖象的交點(diǎn)個(gè)數(shù),即
(x+1)
2=-
e-x+-|ln(x+1)|+k 的解的個(gè)數(shù),
即直線y=k和函數(shù)
(x+1)
2 +
e-x++|ln(x+1)|的圖象的交點(diǎn)個(gè)數(shù).令h(x)=
(x+1)
2 +
e-x++|ln(x+1)|,利用導(dǎo)數(shù)求得函數(shù)的h(x)的單調(diào)區(qū)間,可得函數(shù)h(x)的值域,可得直線y=k和h(x)的圖象的交點(diǎn)個(gè)數(shù).
解答:
解:(1)由于f(x)=
(1+x)(ax
2+bx+c)的圖象關(guān)于x=-1對稱,
故f(x)為二次函數(shù),且對稱軸為x=-1,故有a=0,且 b=c,故有f(x)=
(1+x)(bx+b).
再根據(jù)f(1)=2,求得b=1,故f(x)=
(x+1)
2.
(2)f(x)與g(x)的圖象的交點(diǎn)個(gè)數(shù),即
(x+1)
2=-
e-x+-|ln(x+1)|+k 的解的個(gè)數(shù),
即k=
(x+1)
2 +
e-x++|ln(x+1)|的解得個(gè)數(shù).
即直線y=k和函數(shù)
(x+1)
2 +
e-x++|ln(x+1)|的圖象的交點(diǎn)個(gè)數(shù).
令h(x)=
(x+1)
2 +
e-x++|ln(x+1)|,
當(dāng)x>0時(shí),ln(x+1)>0,
∵h(yuǎn)′(x)=(1+x)-
e-x++
≥2+
e-x+>0,
∴h′(x)>0,h(x)在(0,+∞)上是增函數(shù).
當(dāng)-1<x≤0時(shí),ln(x+1)≤0,h′(x)=(1+x)-
e-x+-
,
∵(x+1)-
<0,
e-x+>0,∴h′(x)<0,
故h(x)在(-1,0]上是減函數(shù).
∵h(yuǎn)(0)=
+
e,當(dāng)x趨于-1時(shí),函數(shù)h(x)的值趨于正無窮大,
當(dāng)x趨于正無窮大時(shí),函數(shù)h(x)的值趨于正無窮大,
①故當(dāng)k<
+
e時(shí),直線y=k和函數(shù)h(x)的圖象無交點(diǎn),函數(shù)f(x)與g(x)的圖象無交點(diǎn);
②當(dāng)k=
+
e時(shí),直線y=k和函數(shù)h(x)的圖象有唯一交點(diǎn),函數(shù)f(x)與g(x)的圖象有一個(gè)交點(diǎn);
③當(dāng)k>
+
e時(shí),直線y=k和函數(shù)h(x)的圖象有2個(gè)交點(diǎn),函數(shù)f(x)與g(x)的圖象有2個(gè)交點(diǎn).
點(diǎn)評:本題主要考查用待定系數(shù)法求函數(shù)的解析式,二次函數(shù)的性質(zhì)應(yīng)用,體現(xiàn)了分類討論、轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.