對于任意實數(shù)a,b,c,d,命題:
(1)若a>b,c>0,則ac>bc
(2)若a>b,則ac2>bc2
(3)若ac2<bc2,則a<b
(4)若a>b,則
1
a
1
b

(5)若a>b>0,c>d>0,則ac>bd
其中正確的個數(shù)是( 。
分析:根據(jù)不等式的基本性質(zhì),逐一判斷5個命題的真假,最后綜合真命題的個數(shù),可得答案.
解答:解:不等式兩邊同乘正數(shù),不等號方向不發(fā)生改變,故(1)正確;
當(dāng)c=0時,若a>b,則ac2>bc2不成立,故(2)錯誤;
若ac2<bc2,則c2>0,則a<b,故(3)正確;
若a>0>b,則
1
a
1
b
不成立,故(4)錯誤
若a>b>0,c>d>0,根據(jù)不等式的同向保號性,可得ac>bd,故(5)正確;
故5個命題中,正確的有3個
故選:C
點評:本題以命題的真假判斷為載體,考查了不等式的基本性質(zhì),熟練掌握不等式的基本性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn 是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關(guān)于x的不等式ax+b>0的解集為(-∞,1),則關(guān)于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足以下條件:①對于任意實數(shù)a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正實數(shù);②f(2)=p-1;(2)③x>1時,總有f(x)<p
(1)求f(1)及f(
12
)
的值(寫成關(guān)于p的表達式);
(2)求證:f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對于任意實數(shù)a,b(a<b),隨機變量X滿足P(a<X≤b)=
b
a
?μ,σ(x)dx
,稱隨機變量X服從正態(tài)分布,記為N(μ,σ2),若X~(0,1),P(X>1)=p,則
0
-1
?μ,σ(x)dx
=
1
2
-p
1
2
-p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足:①對于任意實數(shù)a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.則f(1)=
5
5
;若an=f(2n)(n∈N*),數(shù)列{an}的前項和為Sn,則Sn的最大值是
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ln(
x2+1
-x)
,則對于任意實數(shù)a,b(a+b≠0),
f(a)+f(b)
a+b
的值( 。

查看答案和解析>>

同步練習(xí)冊答案