19.已知函數(shù)f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)當(dāng)a=1時,解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,證明:f(b)≥f(a),并說明等號成立的條件.

分析 (I)將a=1代入,不等式化為具體的絕對值不等式,然后討論解之;
(Ⅱ)由題知f(a)=|a|,f(b)=|b-2a|+|b-a|=|2a-b|+|b-a|≥|2a-b+b-a|=|a|,得證.

解答 解:(Ⅰ)因?yàn)閍=1,不等式變?yōu)閨x-2|+|x-1|>3,-----1
當(dāng)x>2時,有2x-3>3,
∴x>3-----2
當(dāng)1≤x≤2時,有2-x+x-1>3,
∴x∈φ-------3
當(dāng)x<1時,有3-2x>3,
∴x<0--------4
所以該不等式的解集為(-∞,0)∪(3,+∞)------5
證明:(Ⅱ)由題知f(a)=|a|,
f(b)=|b-2a|+|b-a|=|2a-b|+|b-a|------7
≥|2a-b+b-a|=|a|-------8
即f(b)≥f(a),
所以等號成立的條件是:當(dāng)且僅當(dāng)2a-b與b-a同號或它們至少有一個為零.---10

點(diǎn)評 本題考查了絕對值不等式的解法,考查了討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=0.25${\;}^{{x}^{2}-2x+\frac{1}{2}}$的值域是(0,2],單調(diào)增區(qū)間是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(理科做)已知a,b,c分別是△ABC的角A,B,C的對邊,$\overrightarrow{m}$=(2a+c,b),$\overrightarrow{n}$=(cosB,cosC),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)若b=$\sqrt{3}$,求△ABC外接圓半徑長及△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在底面為正方形的四棱錐S-ABCD中,AD⊥平面ABCD,E、F是AS、BC的中點(diǎn),
(Ⅰ)求證:BE∥平面SDF;
(Ⅱ)若AB=5,求點(diǎn)E到平面SDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=3,AC=BD=2,則D到平面ABC的距離等于( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.ABCDEF是邊長為4的正六邊形,PA⊥面ABCDEF,PA=2,則P到BC的距離為4,P到CD的距離為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}}\right.$(t為參數(shù)),則直線l傾斜角的余弦值為(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.判斷條件“p:A?B”是結(jié)論“q:A∪B=B”的什么條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知ABCD是正方形,E是AB的中點(diǎn),將△DAE和△CBE分別沿DE和CE折起,使AE與BE重合,A、B兩點(diǎn)重合后記為P,那么二面角P-CD-E的大小為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

同步練習(xí)冊答案