10.某空間幾何體的三視圖如圖所示,其中正視圖是長(zhǎng)方形,側(cè)視圖是一個(gè)等腰梯形,則該幾何體的體積是6,表面積是15+4$\sqrt{5}$.

分析 由題意,直觀圖是以側(cè)視圖為底面,高為4的直棱柱,即可求出幾何體的體積、表面積.

解答 解:由題意,直觀圖是以側(cè)視圖為底面,高為4的直棱柱,
∴該幾何體的體積是$\frac{1}{2}×(1+2)×1×4$=6,表面積是2×$\frac{1}{2}×(1+2)×1$+(1+2+2×$\sqrt{1+\frac{1}{4}}$)×4=15+4$\sqrt{5}$,
故答案為6,15+4$\sqrt{5}$.

點(diǎn)評(píng) 本題考查幾何體的體積、表面積,考查三視圖,確定直觀圖的形狀是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

為了得到函數(shù)y=sin(2x-)的圖象,可以將函數(shù)y=cos 2x的圖象 ( )

A.向右平移個(gè)單位長(zhǎng)度

B.向右平移個(gè)單位長(zhǎng)度

C.向左平移個(gè)單位長(zhǎng)度

D.向左平移個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1做直線l與雙曲線左右分別交于P,Q兩點(diǎn),若三角形PQF2是以Q為直角的等腰直角三角形,則e2=(  )
A.$5-2\sqrt{2}$B.$5+2\sqrt{2}$C.$4+2\sqrt{2}$D.$4-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)滿足f(-2)=f(0)=-3,且對(duì)任意實(shí)數(shù)x,都有f(x)≥-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)令g(x)=mf(x)+1
①若m<0,證明:g(x)在(-∞,1]上有且只有一個(gè)零點(diǎn);
②若m>0,求y=|g(x)|在[-3,$\frac{3}{2}$]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},則(∁UP)∩Q=( 。
A.{1}B.{2,4}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)a=($\frac{1}{3}$)1.3,b=($\frac{1}{3}$)0.3,c=log3$\frac{1}{2}$,則下列關(guān)系正確的是( 。
A.a>b>cB.b>a>cC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作x軸的垂線交橢圓C于點(diǎn)P,若sin∠PF1F2=$\frac{1}{3}$,則( 。
A.a=$\sqrt{2}$bB.a=2bC.a=$\sqrt{3}$bD.a=3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門(mén)學(xué)科中任選3門(mén),若同學(xué)甲必選物理,則甲的不同選法種數(shù)為15,乙丙兩名同學(xué)都選物理的概率是$\frac{9}{49}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P(x1,y1),Q(x2,y2)關(guān)于直線x+my+4=0對(duì)稱,且滿足x1x2+y1y2=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案