已知函數(shù)f(x)=x2-2x+3在[0,a](a>0)上的最大值是3,最小值是2,則實(shí)數(shù)a的取值范圍是________.
1≤a≤2
分析:先求出函數(shù)f(x)的最小,正好為了說(shuō)明[0,a]包含對(duì)稱軸,當(dāng)x=0時(shí) y=3,根據(jù)對(duì)稱性可知當(dāng)x=2時(shí) y=3,結(jié)合二次函數(shù)的圖象可求出a的范圍.
解答:
解:∵函數(shù)f(x)=x
2-2x+3是開(kāi)口向上的拋物線,對(duì)稱軸 x=1
當(dāng) x=1時(shí)函數(shù)取得最小值 f(1)=1-2+3=2
∵y=x
2-2x+3在[0,a]上最小值為2∴a≥1
當(dāng)x=0時(shí) y=3 函數(shù)y=x
2-2x+3在(1,+∞)上是增函數(shù),
當(dāng)x=2時(shí) y=4-4+3=3,當(dāng)x>2時(shí) y>3
∵函數(shù)y=x
2-2x+3在[0,a]上最大值為3
∴a≤2 綜上所述 1≤a≤2.
故答案為:1≤a≤2
點(diǎn)評(píng):二次函數(shù)是最常見(jiàn)的函數(shù)模型之一,也是最熟悉的函數(shù)模型,解決此類問(wèn)題要充分利用二次函數(shù)的性質(zhì)和圖象.