18.設(shè)等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn,若對?n∈N*,有$\frac{{S}_{2n}}{{S}_{n}}$<5,則q的取值范圍是( 。
A.(0,1]B.($\frac{1}{2}$,2)C.[1,$\sqrt{2}$)D.($\frac{\sqrt{2}}{2}$,2)

分析 當q≠1時,由$\frac{{S}_{2n}}{{S}_{n}}$<5得qn<4,對q分類討論求得q的范圍,當q=1時,$\frac{{S}_{2n}}{{S}_{n}}$<5恒成立,由此得答案.

解答 解:當q≠1時,∵$\frac{{S}_{2n}}{{S}_{n}}$<5,∴$\frac{{a}_{1}(1-{q}^{2n})}{1-q}<5×\frac{{a}_{1}(1-{q}^{n})}{1-q}$,則qn<4.
若q>1,n<logq4對?n∈N*恒成立,
∴l(xiāng)ogq4>nmax不成立,舍去;
若0<q<1,n>logq4對?n∈N*恒成立,
∴l(xiāng)ogq4<nmin,則logq4<1,即0<q<4,又0<q<1.
∴0<q<1.
當q=1時,S2n=2Sn<5Sn成立.
綜上可得:0<q≤1.
故選:A.

點評 本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的前n項和,考查分類討論的數(shù)學思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.不等式$\frac{x-1}{x}≤0$的解集為(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}$,(t為參數(shù)),以坐標原點為極點,x正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=$\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)寫出直線l的極坐標方程與曲線C的直角坐標方程.
(2)若點P是曲線C上的動點,求點P到直線l的距離的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,則tan2β=( 。
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知關(guān)于x的不等式ax2+ax+2>0的解集為R,記實數(shù)a的所有數(shù)值構(gòu)成的集合為M.
(1)求M;
(2)若t>0,對?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在三角形ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若b-c=$\frac{1}{3}$a,sinB=2sinA,則tan(B+C)=$-\frac{2\sqrt{14}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知5x+3<51-x,試求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是$\{α|α=\frac{kπ}{2},k∈Z\}$;
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象;
⑤角θ為第一象限角的充要條件是sinθ>0
其中,真命題的編號是①④.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千克)對年消售量y(單位:t)和年利潤z(單位:千克)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d $\sqrt{x}$,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當年宣傳費x=49時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當年宣傳費x為何值時,年利潤的預(yù)報值最大?并求出最大值
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…..(un,vn),其回歸線$\widehat{v}$=α+βu的斜率和截距的最小二乘估計分別為:β=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

同步練習冊答案