已知數(shù)列{an}的前n項(xiàng)和,Sn=n2+2n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)記Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,求Tn
考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(I)當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1即可得出.
(II)利用“裂項(xiàng)求和”即可得出.
解答: 解:(I)當(dāng)n=1時(shí),a1=S1=3,
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1,
又n=1適合上式,
an=2n+1,n∈N*
(II)∵
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

∴Tn=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)
+…+(
1
2n+1
-
1
2n+3
)]

=
1
2
(
1
3
-
1
2n+3
)

=
1
6
-
1
4n+6
點(diǎn)評:本題考查了利用“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”求數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2+2x-2(a+1)y+3a2+3a+1=0上的所有點(diǎn)都在第二象限,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ∈R時(shí),不等式m2-(1+4sin2θ)m+4-6cos2θ≥0恒成立,則實(shí)數(shù)m的取值范圍是(  )
A、m≥4或m≤1
B、m≥4或m≤-1
C、m≥2或m≤1
D、m≥2或m≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種商品若每個(gè)售價(jià)60元,則可賣出50個(gè);已知單價(jià)每提高10元,則少賣5個(gè),要得到最大的售貨金額,售價(jià)應(yīng)定為( 。
A、80元B、85元
C、90元D、100元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1)
,
b
=(m,2)
,
a
b
,
c
a
的夾角為
3
4
π
b
c
=-4
,求:
(1)實(shí)數(shù)m的值; 
(2)|
c
|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”,則在區(qū)間[1,200]內(nèi)的所有“神秘?cái)?shù)”之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=(cos23°,sin23°),
AC
=(2sin22°,2cos22°),則△ABC的面積為( 。
A、2
2
B、
2
C、
2
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個(gè)數(shù)列發(fā)生器,由數(shù)列發(fā)生器產(chǎn)生的數(shù)列記為{xn}.
(1)若定義函數(shù)f(x)=
2x-1
x+1
,且輸入x0=2,求輸出的數(shù)列{xn}的所有項(xiàng);
(2)若定義函數(shù)f(x)=x+3,且輸入x0=-1,設(shè)Sn是數(shù)列{xn}的前n項(xiàng)和,對于給定的n,請你給出一個(gè)D,并求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集為U,集合A、B均為U的子集,則A∩∁UB=∅是A∪B=B的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案