1.在△ABC中,a=4,b=2,C=45°,則△ABC的面積是( 。
A.5B.$2\sqrt{2}$C.2D.1

分析 由已知利用三角形面積公式即可計(jì)算得解.

解答 解:∵a=4,b=2,C=45°,
∴S△ABC=$\frac{1}{2}ab$sinC=$\frac{1}{2}×4×2×\frac{\sqrt{2}}{2}$=2$\sqrt{2}$.
故選:B.

點(diǎn)評 本題主要考查了三角形面積公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線的弦AP,AQ,若AP⊥AQ,證明:直線PQ過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.P是拋物線y=x2上的動點(diǎn),Q是直線2x-y-4=0上的動點(diǎn),則|PQ|的最小值為( 。
A.$\frac{3\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)求定積分${∫}_{0}^{1}$(2x+ex)dx的值;
(2)若關(guān)于x的不等式${x^2}+\frac{1}{x}-m≥0$對任意x$∈({-∞,-\frac{1}{2}}]$恒成立,求的m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題中:
 ①復(fù)數(shù)z=a+bi(a,b∈R)是純虛數(shù)的必要不充分條件是a=0
 ②若m>0,則方程x2-x+m=0有實(shí)根
 ③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0”
 ④原命題、逆命題、否命題和逆否命題中真命題的個(gè)數(shù)是偶數(shù)
是真命題的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S17>0,S18<0,則$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…,$\frac{{S}_{15}}{{a}_{15}}$中最大的項(xiàng)為( 。
A.$\frac{{S}_{7}}{{a}_{7}}$B.$\frac{{S}_{8}}{{a}_{8}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{10}}{{a}_{10}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等體積的球和正方體的表面積S與S正方體的大小關(guān)系是( 。
A.S正方體>SB.S正方體<SC.S正方體=SD.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在空間直角坐標(biāo)系中,點(diǎn)(2,1,4)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為( 。
A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,-4)D.(2,1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知菱形ABCD中,AB=2,∠A=120°,沿對角線AC折起,使二面角B-AC-D為60°,則點(diǎn)B到△ACD所在平面的距離為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案