如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證AE⊥平面BCE;
(2)求二面角B-AC-E的大小;
(3)求點(diǎn)D到平面ACE的距離.
解法一:(1)平面ACE. ∵二面角D-AB-E為直二面角,且, 平面ABE. 4分 (2)連結(jié)BD交AC于C,連結(jié)FG, ∵正方形ABCD邊長(zhǎng)為2,∴BG⊥AC,BG=, 平面ACE,由三垂線定理的逆定理得FG⊥AC. 是二面角B-AC-E的平面角. 由(Ⅰ)AE⊥平面BCE,又, ∴在等腰直角三角形AEB中,BE=.又直角 , ∴二面角B-AC-E等于 8分 (3)過點(diǎn)E作交AB于點(diǎn)O.OE=1. ∵二面角D-AB-E為直二面角,∴EO⊥平面ABCD. 設(shè)D到平面ACE的距離為h, 平面BCE, ∴點(diǎn)D到平面ACE的距離為 12分 解法二:(Ⅰ)同解法一. (Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直線為x軸,AB所在直線為y軸,過O點(diǎn)平行于AD的直線為z軸,建立空間直角坐標(biāo)系O-xyz,如圖. 面BCE,BE面BCE, ,在的中點(diǎn),
設(shè)平面AEC的一個(gè)法向量為, 則 解得 令得是平面AEC的一個(gè)法向量. 又平面BAC的一個(gè)法向量為,
∴二面角B-AC-E的大小為 (Ⅲ)∵AD∥z軸,AD=2,∴, ∴點(diǎn)D到平面ACE的距離 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com