6.已知m∈R,直線l:mx-(m2+1)y-4m=0和圓C:x2+y2-8x+4y+16=0.
(1)求直線l的斜率k的取值范圍;
(2)是否存在直線l和圓C交于M,N兩點(diǎn),且M,N把圓弧分割成1:3的兩部分?如果存在,求出該直線l的方程,如不存在,試說(shuō)明理由.

分析 (1)寫出直線的斜率利用判別式求最值;
(2)M,N把圓弧分割成1:3的兩部分,則CM⊥CN,確定圓心C到直線l的距離d=$\frac{2}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,即可得出結(jié)論.

解答 解:(1)直線l的方程可化為y=$\frac{m}{{m}^{2}+1}$x-$\frac{4m}{{m}^{2}+1}$,斜率k=$\frac{m}{{m}^{2}+1}$,
即km2-m+k=0,k=0時(shí),m=0成立;
又∵△≥0,∴1-4k2≥0,
所以,斜率k的取值范圍是[-$\frac{1}{2}$,$\frac{1}{2}$].
(2)M,N把圓弧分割成1:3的兩部分,則CM⊥CN.由(1)知l的方程為y=k(x-4),其中|k|≤$\frac{1}{2}$;
圓C的圓心為C(4,-2),半徑r=2;圓心C到直線l的距離d=$\frac{2}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$
∴k=±1
∴直線l的方程y=±(x-4).

點(diǎn)評(píng) 本題考查直線與圓及不等式知識(shí)的綜合應(yīng)用,考查點(diǎn)到直線的距離公式,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00~10:00間各自的點(diǎn)擊量,得如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差分別是多少?
(2)甲網(wǎng)站點(diǎn)擊量在[10,50]間的頻率是多少?
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2-2x-8,
(1)若對(duì)x>3,不等式f(x)>(m+2)x-m-15恒成立,求實(shí)數(shù)m的取值范圍
(2)記h(x)=-$\frac{1}{2}$f(x)-4,那么當(dāng)x≥$\frac{1}{2}$時(shí),是否存在區(qū)間[m,n](m<n)使得函數(shù)在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請(qǐng)求出區(qū)間[m,n];若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:方程x2-2ax-1=0有兩個(gè)實(shí)數(shù)根;命題q:函數(shù)f(x)=x+$\frac{4}{x}$的最小值為4.給出下列命題:
①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.
則其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知命題p:方程x2-mx+1=0有實(shí)數(shù)解,命題q:函數(shù)f(x)=log2(x2-2x+m)的定義域?yàn)镽,若命題p∨q為真,¬p為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若正方體的棱長(zhǎng)為$\sqrt{2}$,則以該正方體各個(gè)面的中心為頂點(diǎn)的凸多面體的表面積為(  )
A.$\frac{{\sqrt{2}}}{3}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法正確的個(gè)數(shù)是( 。
(1)($\frac{16}{81}$)${\;}^{\frac{3}{4}}$+log3$\frac{5}{4}$+log3$\frac{4}{5}$=$\frac{27}{8}$;
(2)冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(4)=2
(3)已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為30°
(4)已知x>1,則函數(shù)y=$\frac{1}{x-1}$+x的最小值為2
(5)3-2,2${\;}^{\frac{1}{3}}$,log${\;}_{\frac{1}{2}}$3三個(gè)數(shù)中最大的數(shù)是2${\;}^{\frac{1}{3}}$
(6)已知a>1,f(x)=a${\;}^{{x}^{2}+2x}$,則-1<x<0 是使f(x)<1成立的充分不必要條件.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知非空集合M滿足:若x∈M,則$\frac{1}{1-x}$∈M,則當(dāng)4∈M時(shí),集合M的所有元素之積等于( 。
A.0B.1C.-1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合M={x|-2<x<-1},集合N={x|($\frac{1}{2}$)x≤4},則M∪N( 。
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

查看答案和解析>>

同步練習(xí)冊(cè)答案