分析 先利用函數(shù)f(x)=$\frac{alnx}{x}$(a∈R)的圖象與直線x-2y=0相切,求出a,再作出f(x)的圖象,利用當(dāng)函數(shù)g(x)=f(f(x))-t恰有一個(gè)零點(diǎn)時(shí),即可實(shí)數(shù)t的取值范圍.
解答 解:由題意,f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
取切點(diǎn)(m,n),則n=$\frac{alnm}{m}$,m=2n,
$\frac{a(1-lnm)}{{m}^{2}}$=$\frac{1}{2}$,
∴m=$\sqrt{e}$,a=e.∴f(x)=$\frac{elnx}{x}$,
f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,
函數(shù)f(x)在(0,e)上單調(diào)遞增,(e,+∞)上單調(diào)遞減,
f(1)=0,x→+∞,f(x)→0,
由于f(e)=1,f(1)=0,
∴當(dāng)函數(shù)g(x)=f(f(x))-t恰有一個(gè)零點(diǎn)時(shí),實(shí)數(shù)t的取值范圍是{0},
故答案為:{0}.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{5}{36}$ | C. | $\frac{1}{9}$ | D. | $\frac{5}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $\frac{{\sqrt{3}}}{8}$ | D. | $-\frac{{\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,2} | B. | {1,2} | C. | {2} | D. | {0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | kπ,k∈z | B. | (2k+1)π,k∈z | C. | 2kπ+$\frac{π}{2}$,k∈z | D. | kπ+$\frac{π}{2}$,k∈z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com