二進(jìn)制數(shù)110101轉(zhuǎn)換成八進(jìn)制數(shù)的結(jié)果是
 
考點(diǎn):整除的定義
專題:算法和程序框圖
分析:由二進(jìn)制轉(zhuǎn)化為十進(jìn)制的方法,我們只要依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,即可得到十進(jìn)制數(shù),再利用“除k取余法”是將十進(jìn)制數(shù)除以8,然后將商繼續(xù)除以8,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.
解答: 解:110101(2)=1×20+0×21+1×22+0×23+1×24+1×25=53,
53÷8=6…5,
6÷8=0…6,
故53(10)=65(8)
故答案為:65(8)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是算法的概念,由二進(jìn)制轉(zhuǎn)化為八進(jìn)制的方法,進(jìn)制轉(zhuǎn)換為十進(jìn)制的方法是依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=
1
2n
(n∈N),若bn=log 
1
2
an2,且Sn是數(shù)列{bn}的前n項(xiàng)和,當(dāng)n≥5時(shí),試證明anSn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k為常數(shù)).
(1)若f(x)的圖象中相鄰兩對(duì)稱軸之間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時(shí),f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是邊長(zhǎng)為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD.
(1)求證:BF∥平面ACE;
(2)求證:平面EAC⊥平面BDEF
(3)求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體A-BCD中,O為底面正三角形BCD的中心,E為AB中點(diǎn),求異面直線OE與BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)=x2-ax+2a-1僅存在整數(shù)零點(diǎn),則實(shí)數(shù)a的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=
π
6
,
(1)寫出直線l的參數(shù)方程.
(2)設(shè)l與圓x2+y2=4相交于點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)想通過檢查發(fā)票及銷售記錄的2%來(lái)快速估計(jì)每月的銷售總額,現(xiàn)采用系統(tǒng)抽樣,從某本50張的發(fā)票存根中隨機(jī)抽取1張,如15號(hào),然后按順序往后抽,依次為15,65,115…,則第5個(gè)號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知三點(diǎn)A(m,n),B(n,t),C(t,m),直線AC的斜率與AB的斜率之和為
5
3
,AB恰好經(jīng)過拋物線x2=2p(y-q)的焦點(diǎn)F,且與拋物線交于P,Q兩點(diǎn),則
PF
QF
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案