精英家教網 > 高中數學 > 題目詳情
直線a∥b,a與平面α相交,判定b與平面α的位置關系,并證明你的結論.
考點:空間中直線與平面之間的位置關系
專題:空間位置關系與距離
分析:判定b與平面α的位置關系是b∩α=Q,可用反證法給出證明:如圖所示,由于a∥b,可以經過直線a,b確定一個平面β.由于a∩α=P,可得α∩β=l.可得b與直線l必然相交,否則b∥l,得出矛盾.
解答: 解:判定b與平面α的位置關系是b∩α=Q,下面給出證明:
如圖所示,∵a∥b,
∴可以經過直線a,b確定一個平面β.
∵a∩α=P,
∴α∩β=l.
則b與直線l必然相交,否則b∥l,
則a∥l,與a∩l=P相矛盾.
因此b∩l=Q,
∴b∩α=Q.
點評:本題考查了線面平行的性質、線面相交、平面的確定公理、反證法,考查了推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(α)=
sin(π-α)cos(-α+
2
)
cos(-π-α)
,且α為第三象限角.
(Ⅰ)化簡f(α).
(Ⅱ)若cos(a+
π
2
)=
1
5
,求f(a)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x+1
x
,數列{an}滿足a1=1,an+1=f(
1
an
), n∈N*

(1)求數列{an}的通項公式;
(2)令Tn=a1-a2+a3-a4+…+a2n-1-a2n,求Tn
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,Sn
m-2005
2
對一切n∈N*成立,求最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:

經統(tǒng)計,用于數學學習的時間(單位:小時)與成績(單位:分)近似于線性相關關系.對某小組學生每周用于數學的學習時間x與數學成績y進行數據收集如表:
x1516181922
y10298115115120
由表中樣本數據求得回歸方程為
y
=
b
x+
a
,且直線l:x+18y=100上,則點(
a
b
)滿足( 。
A、在l左側B、在l右側
C、在l上D、無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}的通項公式an=2n-9,(n∈N+) 則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一個圓錐的側面展開圖是中心角90°面積為S1的扇形,若圓錐的全面積是S2,則
S1
S2
=( 。
A、
4
5
B、
2
3
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

用二項式定理證明:
(1)32n+2-8n-9能被64整除(n∈N);
(2)2n>n2(n≥5).

查看答案和解析>>

科目:高中數學 來源: 題型:

爸爸去哪兒節(jié)目組安排星娃們露營,村長要求,Feyman、楊陽洋、貝兒依次在A、B、C三處扎篷.AB=8米,BC=4米,AC=6米.現村長給多多一個難題,要求她安扎在B、C兩點之間的連線段的D處,且∠ADC=60°.問多多與Feyman相距
 
米.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,線段AB的兩個端點A、B分別在x軸,y軸上滑動,|AB|=3,點M是線段AB上一點,且|AM|=1點M隨線段AB的滑動而運動.
(Ⅰ)求動點M的軌跡E的方程
(Ⅱ)過定點N(
3
,0)
的直線l交曲線E于C、D兩點,交y軸于點P,若
PC
1
CN
PD
2
DN
,求λ12的值.

查看答案和解析>>

同步練習冊答案