(2012•上高縣模擬)點P到圖形C上每一個點的距離的最小值稱為點P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點A的距離相等的點的軌跡不可能是(  )
分析:根據(jù)題意“點P到圖形C上每一個點的距離的最小值稱為點P到圖形C的距離”,將平面內(nèi)到定圓C的距離轉(zhuǎn)化為到圓上動點的距離,再分點A現(xiàn)圓C的位置關(guān)系,結(jié)合圓錐曲線的定義即可解決.
解答:解:排除法:設(shè)動點為Q,
1.當(dāng)點A在圓內(nèi)不與圓心C重合,連接CQ并延長,交于圓上一點B,由題意知QB=QA,
又QB+QC=R,所以QA+QC=R,即Q的軌跡為一橢圓;如圖.
2.如果是點A在圓C外,由QC-R=QA,得QC-QA=R,為一定值,即Q的軌跡為雙曲線的一支;
3.當(dāng)點A與圓心C重合,要使QB=QA,則Q必然在與圓C的同心圓,即Q的軌跡為一圓;
則本題選D.
故選D.
點評:本題主要考查了軌跡方程,以及分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)設(shè)△ABC的內(nèi)角A,B,C所對的邊為a,b,c;則下列命題正確的是
①②⑤
①②⑤

①若ab>c2;則C<
π
3
;②若a+b>2c;則C<
π
3
;③若(a2+b2)c2<2a2b2;則C>
π
3

④若(a+b)c<2ab;則C>
π
2
;⑤若a3+b3=c3;則C<
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)在復(fù)平面內(nèi),復(fù)數(shù)
10i
3-i
對應(yīng)的點的坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)已知f(x)是R上的偶函數(shù),若將f(x)的圖象向左平移一個單位后,則得到一個奇函數(shù)的圖象,若f(2)=3,則f(0)+f(1)+f(2)+f(3)+…+f(2013)=
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F2與拋物線y2=4x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S,T,而與拋物線交于C,D兩點,且
|CD|
|ST|
=2
2

(1)求橢圓E的方程;
(2)若過m(2,0)的直線與橢圓E相交于兩點A和B,設(shè)P為橢圓E上一點,且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案