函數(shù)f(x)=x2-λx,若f(n+1)>f(n)對(duì)任意正整數(shù)n均成立,則λ的取值范圍是( 。
A、λ>0B、λ>-3
C、λ<1D、λ<3
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,函數(shù)f(x)=x2-λx在(1.5,+∞)上單調(diào)遞增,故有 
λ
2
<1.5,由此解得λ的取值范圍.
解答: 解:由題意可得,函數(shù)f(x)=x2-λx在(1.5,+∞)上單調(diào)遞增,
λ
2
<1.5,解得λ<3,
故選:D.
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,a1=1公差d≠0,Sn為其前n項(xiàng)的和,若a1,a2,a5成等比數(shù)列,S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1+mx2
x
在區(qū)間[1,2]上是增函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
y2
25
+
x2
16
=1的焦點(diǎn)坐標(biāo)為(  )
A、(0,±3)
B、(±3,0)
C、(0,±5)
D、(±4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列式子中成立的是( 。
A、log 
1
2
4<log 
1
2
6
B、(
1
2
0.3>(
1
3
0.3
C、(
1
2
3.4<(
1
2
3.5
D、log32>log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(2x-
1
x
6展開式中的常數(shù)項(xiàng)為( 。
A、-160B、-180
C、160D、180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
<n(n∈N*,且n>1)時(shí),不等式在n=k+1時(shí)的形式是( 。
A、1+
1
2
+
1
3
+…+
1
2k
<k+1
B、1+
1
2
+
1
3
++
1
2k-1
+
1
2k+1-1
<k+1
C、1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+
1
2k+1-1
<k+1
D、1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+…+
1
2k+1-2
+
1
2k+1-1
<k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=sin(2x-
π
6
)的圖象,只需把正弦曲線y=sinx上所有點(diǎn)( 。
A、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
C、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變
D、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3+2x2+1,若f′(-1)=4,則a=( 。
A、
2
3
B、
1
4
C、
8
3
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案