已知雙曲線-=1上一點M到右準線的距離是10,F2是右焦點,N是MF2的中點,O為坐標原點,則|ON|等于(    )

A.2          B.2或7          C.7或12         D.2或12

D


解析:

設F1為左焦點,由M到右準線的距離為10,得M到右焦點F2的距離為14,從而到左焦點F1的距離為24或4.連結ON,則ON平行且等于MF1=12或2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(x0,y0)是漸近線為2x±3y=0且經(jīng)過定點(6,2
3
)的雙曲線C1上的一動點,點Q是P關于雙曲線C1實軸A1A2的對稱點,設直線PA1與QA2的交點為M(x,y),
(1)求雙曲線C1的方程;
(2)求動點M的軌跡C2的方程;
(3)已知x軸上一定點N(1,0),過N點斜率不為0的直線L交C2于A、B兩點,x軸上是否存在定點 K(x0,0)使得∠AKN=∠BKN?若存在,求出點K的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個焦點在拋物線y2=24x的準線上,則雙曲線的方程為(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線-=1(a>0,b>0)的左、右兩個焦點分別為F1、F2,P為雙曲線左支上的一點,P到左準線的距離為d.

(1)若雙曲線的一條漸近線是y=x,問是否存在點P使d,|PF1|,|PF2|成等比數(shù)列?若存在,求出P點坐標,若不存在,說明理由;

(2)在已知雙曲線的左支上使d,|PF1|,|PF2|成等比數(shù)列的點P存在時,求離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省部分重點中學聯(lián)考高二(上)期末數(shù)學試卷(解析版) 題型:解答題

已知點P(x,y)是漸近線為2x±3y=0且經(jīng)過定點(6,2)的雙曲線C1上的一動點,點Q是P關于雙曲線C1實軸A1A2的對稱點,設直線PA1與QA2的交點為M(x,y),
(1)求雙曲線C1的方程;
(2)求動點M的軌跡C2的方程;
(3)已知x軸上一定點N(1,0),過N點斜率不為0的直線L交C2于A、B兩點,x軸上是否存在定點 K(x,0)使得∠AKN=∠BKN?若存在,求出點K的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學單元檢測:圓錐曲線(2)(解析版) 題型:解答題

已知雙曲線-=1的一條漸近線方程為y=x,則拋物線y2=4ax上一點M(2,y)到該拋物線焦點F的距離是   

查看答案和解析>>

同步練習冊答案