12.記集合A={x,y)|x2+y2≤4}和集合B={(x,y)|x-y-2≤0,x-y+2≥0}表示的平面區(qū)域分別為Ω1、Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( 。
A.$\frac{π-2}{2π}$B.$\frac{π+2}{π}$C.$\frac{2}{π}$D.$\frac{π+2}{2π}$

分析 分別求出集合A,B對應(yīng)區(qū)域的面積,根據(jù)幾何概型的概率公式即可得到結(jié)論.

解答 解:區(qū)域Ω1對應(yīng)的面積S1=4π,
作出平面區(qū)域Ω2,則Ω2對應(yīng)的平面區(qū)域如圖,則對應(yīng)的面積S=2π+4,
則根據(jù)幾何概型的概率公式可知若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2的概率為P=$\frac{2π+4}{4π}$=$\frac{π+2}{2π}$.
故選;D

點(diǎn)評 本題主要考查幾何概型的概率公式的計(jì)算,根據(jù)條件求出相應(yīng)的面積是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.f(x)=ax3-2x2-3,若f′(1)=2,則a等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c.若角B是A,C的等差中項(xiàng),且不等式-x2+8x-12>0的解集為{x|a<x<c},則△ABC的面積等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=x(1+x)n,則${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=(n+2)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1、F2,P為橢圓上一點(diǎn),且PF1⊥PF2,若△PF1F2的面積為9,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}5-x,x≤2\\ 2+{log_a}x,x>2\end{array}\right.({a>0,a≠1})$的值域?yàn)閇3,+∞),則實(shí)數(shù)的取值范圍是( 。
A.(1,2]B.(1,2)C.$({\frac{1}{2},1})$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=(m+1)x2-mx+m-1
(1)當(dāng)m=1時(shí),求不等式f(x)>0的解集;
(2)若m>-1,求不等式f(x)>mx的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin 2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.求函數(shù)f(x)解析式與對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線y=4x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為( 。
A.4B.0C.-1-iD.1

查看答案和解析>>

同步練習(xí)冊答案