在△ABC中,已知2B=A+C,b=1,求a+c的取值范圍.
考點:正弦定理的應用
專題:解三角形
分析:由題意和內(nèi)角和定理求出B,并求出A、C的關(guān)系式,利用正弦定理用角的正弦表示a,c,利用兩角和差的三角公式以及輔助角公式化簡,再由正弦函數(shù)的性質(zhì)求出a+c的取值范圍.
解答: 解:由題意知,△ABC中,2B=A+C,
因為A+B+C=π,所以B=
π
3
,
則A+C=π-
π
3
=
3
,C=
3
-A
,所以0<A<
3

又b=1,由正弦定理得:
a
sinA
=
c
sinC
=
b
sinB
=
1
sin
π
3
=
2
3
3
,
所以a=
2
3
3
sinA,c=
2
3
3
sinC,
則a+c=
2
3
3
(sinA+sinC)=
2
3
3
[sinA+sin(
3
-A
)]
=
2
3
3
(sinA+
3
2
cosA+
1
2
sinA)=
2
3
3
3
2
sinA+
3
2
cosA)
=2sin(A+
π
6
)
,
由0<A<
3
得,
π
6
<A+
π
6
6
,則
1
2
sin(A+
π
6
)
≤1,
1<2sin(A+
π
6
)≤2
,
所以a+c的取值范圍是(1,2].
點評:本題主要考查正弦定理的應用,利用條件將a+c轉(zhuǎn)化為三角函數(shù)是解決本題的關(guān)鍵,要求熟練掌握公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角,A,B,C所對的邊,若a=3,C=120°,△ABC的面積S=
15
3
4
,則c為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)cos(-
79
6
π)
(2)sin(α+180°)cos(-α)sin(-α-180°)
(3)cos(-
π
6

(4)sin(-
5
3
π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線 P A切圓 O于點 A,直線 P O交圓 O于點 B、C,若PC=2+
3
,P A=1,則圓 O的半徑長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
4
-y2=1的實軸長為(  )
A、4
B、2
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓ρ=3cosθ與直線2ρcosθ+4ρsinθ+a=0相切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C所對邊的長分別為a,b,c,已知b=
7
,c=2,B=
π
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

位于坐標原點的一個支點P按下述規(guī)則移動:質(zhì)點每次移動一個單位:移動的方向為向上或向右,并且向上、向右移動的概率都是0.5,質(zhì)點P移動6次后位于點(2,4)的概率為( 。
A、(
1
2
6
B、C
 
2
6
1
2
6
C、C
 
2
6
1
2
2
D、C
 
2
6
C
 
4
6
1
2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個變量y1,y2,y3隨x的變化情況如下表:
x1.003.005.007.009.0011.00
y15135625171536456655
y2529245218919685177149
y35.006.106.616.957.207.40
三個變量y1,y2,y3中,變量
 
隨x呈對數(shù)函數(shù)型變化,變量
 
隨x呈指數(shù)函數(shù)型變化,變量
 
隨x呈冪函數(shù)變化.

查看答案和解析>>

同步練習冊答案