9.將下列角度化為弧度,弧度轉化為角度
(1)780°,(2)-1560°,(3)67.5°(4)$-\frac{10}{3}π$,(5)$\frac{π}{12}$,(6)$\frac{7π}{4}$.

分析 利用π弧度=180°即可得出.

解答 解:(1)780°=$\frac{780}{180}×π$弧度=$\frac{13π}{3}$弧度,
(2)-1560°=-$\frac{1560}{180}×π$弧度=-$\frac{26}{3}$π弧度,
(3)67.5°=$\frac{67.5}{180}π$弧度=$\frac{3π}{8}$弧度.
(4)$-\frac{10}{3}π$弧度=-$\frac{10}{3}×18{0}^{°}$=-600°,
(5)$\frac{π}{12}$弧度=$\frac{18{0}^{°}}{12}$=15°,
(6)$\frac{7π}{4}$弧度=$\frac{7}{4}×18{0}^{°}$=315°

點評 本題考查了弧度與角度的換算關系,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知橢圓C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)與雙曲線C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦點F1,F(xiàn)2,設M為C1與C2在第一象限內(nèi)的交點,|F1F2|=2c.則( 。
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.2017年春晚過后,為了研究演員上春晚次數(shù)與受關注度的關系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關注度進行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬人)10204080100
(1)若該演員的粉絲數(shù)量g(x)≤g(1)=0與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并就此分析,該演員上春晚12次時的粉絲數(shù)量;
(2)若用$\frac{{y}_{i}}{{x}_{i}}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時粉絲的“即時均值”(四舍五入,精確到整數(shù)),從這5個“即時均值”中任選2數(shù),記所選的2數(shù)之和為隨機變量η,求η的分布列與數(shù)學期望.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(x2-$\sqrt{\frac{2}{x}}$)5的展開式中常數(shù)項為20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線C1:ρ=1,${C_2}:\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t+1\end{array}\right.$(t為參數(shù)).
(Ⅰ)求曲線C1上的點到曲線C2距離的最小值;
(Ⅱ)若把C1上各點的橫坐標都擴大為原來的2倍,縱坐標擴大為原來的$\sqrt{3}$倍,得到曲線${C_1}^′$.設P(-1,1),曲線C2與${C_1}^′$交于A,B兩點,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.極坐標系中橢圓C的方程為ρ2=$\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)若橢圓上任一點坐標為P(x,y),求${x^2}+\sqrt{2}xy$的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA|•|QB|=|QC|•|QD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.下表是某位理科學生連續(xù)5次月考的物理、數(shù)學的成績,結果如下:
次數(shù)12345
物理(x分)9085746863
數(shù)學(y分)1301251109590
(Ⅰ)求該生5次月考物理成績的平均分和方差;
(Ⅱ)一般來說,學生的數(shù)學成績與物理成績有較強的線性相關關系,根據(jù)上表提供的數(shù)據(jù),求兩個變量x,y的線性回歸方程.(小數(shù)點后保留一位有效數(shù)字)
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\overline{x}$,$\overline{y}$表示樣本均值
參考數(shù)據(jù):902+852+742+682+632=29394,
90×130×85×125×74×110×68×95+63×90=42595.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若點E為AF的中點,∠BCD=60°,且BC=CF=2,求四面體BDEF的體積.

查看答案和解析>>

同步練習冊答案