求證:(sin2α-cos2α)2=1-sin4α
考點:三角函數(shù)恒等式的證明
專題:證明題,三角函數(shù)的求值
分析:運用同角的平方關系和二倍角的正弦公式,對等式的左邊化簡,即可得到右邊.
解答: 證明:(sin2α-cos2α)2=sin22α-2sin2αcos2α+cos2
=(sin22α+cos22α)-2sin2αcos2α
=1-sin4α,
則等式成立.
點評:本題考查三角函數(shù)的化簡和證明,考查同角的平方關系和二倍角的正弦公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面內,若M到定點F1(0,-1)、F2(0,1)的距離之和為4,則M的軌跡方程為(  )
A、
y2
16
+
x2
4
=1
B、
x2
16
+
y2
4
=1
C、
y2
4
+
x2
3
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以坐標原點為極點,橫軸的正半軸為極軸的極坐標系下,有曲線C:ρ=4cosθ,過極點的直線θ=φ(φ∈R且φ是參數(shù))交曲線C于兩點0,A,令OA的中點為M.
(1)求點M在此極坐標下的軌跡方程(極坐標形式).
(2)當φ=
3
時,求M點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2-2x-3的圖象與x軸交于兩點A,B(xA<xB),與y軸交于點C,△ABC的外接圓的圓心為M(1,-1),斜率為3的直線l與⊙M交于不同兩點E,F(xiàn),且滿足ME⊥MF.
(1)求點A,B,C的坐標及⊙M的半徑R的值;
(2)求直線l的方程;
(3)設P是直線l上的動點,且點A,C在l的同側,求||PA|-|PC||的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐S-ABCD中,AB∥CD,AB=BC=2,CD=SD=1,BC⊥CD,M為SB的中點,DS⊥面SAB.
(1)求證:CM∥面SAD;
(2)求證:CD⊥SD;
(3)求四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
1+sin2θ-cos2θ
1+sin2θ+cos2θ
=tanθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,3),B(5,4),C(10,8),若
AP
=
AB
AC
(λ∈R),求當λ為何值時:
(1)點P在直線y=x上?
(2)點P在第二象限內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第四象限角,且sinα=-
4
5
,則tan2α的值為( 。
A、-
4
3
B、-
24
7
C、
24
7
D、
24
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(-2x+
π
6
)
求:
(1)函數(shù)的最小正周期;
(2)函數(shù)的單調增區(qū)間;
(3)若-
π
3
≤x≤
π
6
,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案