2.設U={1,2,3,4,5},A={1,2,5},B={2,3,4},則B∩∁UA=( 。
A.B.{2}C.{3,4}D.{1,3,4,5}

分析 由全集U及A,求出A的補集,找出B與A補集的交集即可.

解答 解:∵U={1,2,3,4,5},A={1,2,5},B={2,3,4},
∴∁UA={3,4},
則B∩∁UA={3,4},
故選:C.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.己知直線2x-y-4=0與直線x-2y+1=0交于點p.
(1)求過點p且垂直于直線3x+4y-15=0的直線l1的方程;(結果寫成直線方程的一般式)
(2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.過點P($\sqrt{3}$,1)的直線l與圓x2+y2=1有公共點,則直線l的傾斜角的取值范圍是[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=-x3+ax2-x-1在R上不單調(diào),則實數(shù)a的取值范圍是( 。
A.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)B.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)C.[-$\sqrt{3}$,$\sqrt{3}$]D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足$\frac{x-3}{x+2}$<0.
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若?q是?p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經(jīng)過點(2,$\frac{1}{4}$),則f(3)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=log2(x+3)-2x3+4x的圖象在[-2,5]內(nèi)是連續(xù)不斷的,對應值表如下:
x-2-1 
 f(x)-11.58 -5.68 -39.42 -109.19 -227
(1)計算上述表格中的對應值a和b.
(2)從上述對應值表中,可以發(fā)現(xiàn)函數(shù)f(x)在哪幾個區(qū)間內(nèi)有零點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=-sinx+ax(a為常數(shù)).
(1)若x∈[0,$\frac{π}{2}$]時函數(shù)f(x)單調(diào)遞增,求實數(shù)a的取值范圍;
(2)證明:當x∈[0,$\frac{π}{2}$]時,cosx≥-$\frac{1}{2}$x2+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.16B.$\frac{16}{3}$C.32D.48

查看答案和解析>>

同步練習冊答案