、為雙曲線: 的左、右焦點,點在雙曲線上,∠=,則軸的距離為(   )

A.          B.         C.      D.

 

【答案】

B

【解析】

試題分析:雙曲線:,=4,=1,

所以a=2,b=1。c²=a²+b²=5,,

根據(jù)題意|P-P|=2a=4,P²+P ²-2P·P=16,

由余弦定理得,cosP=,,

由正弦定理,

P到x軸距離= =

故選B。

考點:雙曲線的定義及其幾何性質,正弦定理、余弦定理的應用。

點評:中檔題,本題綜合性較強,綜合考查雙曲線的定義及其幾何性質,正弦定理、余弦定理的應用。注意數(shù)形結合,利用圖形發(fā)現(xiàn)邊角關系。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知雙曲線C:
x2
a2
+
y2
b2
=1(a>0,b>0),B是右頂點,F(xiàn)是右焦點,點A在x軸正半軸上,且滿足|
OA
|、|
OB
|、|
OF
|成等比數(shù)列,過F作雙曲線C在第一、第三象限的漸近線的垂線l,垂足為P.
(1)求證:
PA
OP
=
PA
FP
;
(2)若l與雙曲線C的左、右兩支分別相交于點D、E,求雙曲線C的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,點A、B分別為雙曲線C實軸的左端點和虛軸的上端點,點F1、F2分別為雙曲線C的左、右焦點,點M、N是雙曲線C的右支上不同兩點,點Q為線段MN的中點.已知在雙曲線C上存在一點P,使得
PA
+
PB
+
PF2
=(
3
-3)
OP

(Ⅰ)求雙曲線C的離心率;
(Ⅱ)設a為正常數(shù),若點Q在直線y=2x上,求直線MN在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑的圓相切,又知C的一個焦點與A關于直線y=x對稱.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設直線y=mx+1與雙曲線C的左支交于A,B兩點,另一直線l經(jīng)過M(-2,0)及AB的中點,求直線l在y軸上的截距b的取值范圍;
(Ⅲ)若Q是雙曲線C上的任一點,F(xiàn)1F2為雙曲線C的左,右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)已知雙曲線E:
x2
a2
-
y2
b2
=1
的焦距為4,以原點為圓心,實半軸長為半徑的圓和直線x-y+
6
=0
相切.
(Ⅰ) 求雙曲線E的方程;
(Ⅱ)已知點F為雙曲線E的左焦點,試問在x軸上是否存在一定點M,過點M任意作一條直線l交雙曲線E于P,Q兩點,使
FP
FQ
為定值?若存在,求出此定值和所有的定點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;
(3)設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習冊答案