【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

【答案】B
【解析】由 的定義可知①正確,④正確,設 ,則 ,所以②錯誤;若 ,則 ,③不正確; ,即 中元素比 中元素多一個,則 ,⑤正確。
故答案為:B.

先要明確新定義“冪集”的含義,對各個說法逐個判斷,得到正確的個數(shù)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ (a∈R).
(1)若f(x)在x=2處取得極小值,求a的值;
(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 下列四個命題: ①f(f(1))>f(3);
x0∈(1,+∞),
③f(x)的極大值點為x=1;
x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正確的有 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點,
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極值;
(2)設函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上不存在 ,使得 成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內(nèi)部的動點,設向量 (m,n為實數(shù)),則m+n的取值范圍是(  )

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于( 。

A.55π
B.75π
C.77π
D.65π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,圓錐SO的底面圓半徑|OA|=1,其側(cè)面展開圖是一個圓心角為 的扇形.

(1)求此圓錐的表面積;
(2)求此圓錐的體積.

查看答案和解析>>

同步練習冊答案