已知.
(1)求的極值,并證明:若有;
(2)設(shè),且,,證明:,
若,由上述結(jié)論猜想一個一般性結(jié)論(不需要證明);
(3)證明:若,則.
(1)詳見解析;(2) 詳見解析;(3) 詳見解析.
【解析】
試題分析:(1)利用求導探求函數(shù)的單調(diào)性,進而確定其極值;借助結(jié)論時恒成立,證明;(2)借助第一問的結(jié)論,通過拼湊技巧進行構(gòu)造要證明的不等式;(3)借助第二問的猜想結(jié)論,進行構(gòu)造,利用對數(shù)運算進行化簡整理即可得到證明的結(jié)論.
試題解析:(1)則
當x∈(0,1)時,x∈(1,+∞)時,
∴在(0,1)遞增,在(1,+∞)遞減,
2分
∴當時恒成立,即時恒成立。
∴ 4分
證明:,
(2)證明:設(shè),且,令,則,且
,,
由(1)可知 ①
②
①+②,得
∴ 8分
猜想:若,且時有
9分
(3)證明:令
由猜想結(jié)論得
=
∴,
即有。 14分
考點:(1)函數(shù)的極值;(2)不等式的證明.
科目:高中數(shù)學 來源: 題型:
|
|
π |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆河南省畢業(yè)班階段測試一理數(shù)學卷(解析版) 題型:解答題
已知函數(shù) .
(1)若 的極小值為1,求a的值.
(2)若對任意 ,都有 成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆安徽省高二下學期期中質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
(1)求的極大值和極小值,并畫出函數(shù)的草圖
(2)根據(jù)函數(shù)圖象討論方程的根的個數(shù)問題:
①有且僅有兩個不同的實根,求的取值范圍
②有且僅有一個實根,求的取值范圍
③無實根,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010年湖北省高二12月月考數(shù)學試卷 題型:解答題
已知函數(shù)
(1)求的極大值和極小值,并畫出函數(shù)的草圖
(2)根據(jù)函數(shù)圖象討論方程的根的個數(shù)問題:
①有且僅有兩個不同的實根,求的取值范圍
②有且僅有一個實根,求的取值范圍
③無實根,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試(湖北卷)數(shù)學(理科) 題型:解答題
已知函數(shù)
(1)求的極大值和極小值,并畫出函數(shù)的草圖
(2)根據(jù)函數(shù)圖象討論方程的根的個數(shù)問題:
①有且僅有兩個不同的實根,求的取值范圍
②有且僅有一個實根,求的取值范圍
③無實根,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com