【題目】中秋節(jié)即將到來,為了做好中秋節(jié)商場促銷活動(dòng),某商場打算將進(jìn)行促銷活動(dòng)的禮品盒重新設(shè)計(jì).方案如下:將一塊邊長為10的正方形紙片剪去四個(gè)全等的等腰三角形, , , 再將剩下的陰影部分折成一個(gè)四棱錐形狀的包裝盒,其中重合于點(diǎn), 重合, 重合, 重合, 重合(如圖所示).

(1)求證:平面平面

(2)已知,過于點(diǎn),求的值.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)拼接成底面的四個(gè)角必為全等的等腰直角三角形,從而,由此能證明進(jìn)而得平面平面;

(2)RtSHO中,SO=5, ,

RtEMO中, ,

試題解析:(1)∵折后A,BC,D重合于一點(diǎn)O,

∴拼接成底面EFGH的四個(gè)直角三角形必為全等的等腰直角三角形,

∴底面EFGH是正方形,故EGFH,

∵在原平面圖形中,等腰三角形△SEE′≌△SGG′,

SE=SG,∴EGSO,

又∵EG平面SEC,∴平面SEG⊥平面SFH

(2)解:依題意,當(dāng)時(shí),即

Rt△SHO中,SO=5, ,

Rt△EMO中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

(1)求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù).證明:對任意.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= g(x)= ,則函數(shù)f[g(x)]的所有零點(diǎn)之和是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=kx,g(x)=
(1)求函數(shù)g(x)= 的單調(diào)區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是, , ,

(1)求 的標(biāo)準(zhǔn)方程;

(2)是否存在直線滿足條件:①過的焦點(diǎn);②與交于不同的兩點(diǎn)且滿足?若存在,求出直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)當(dāng)m=﹣1時(shí),求A∩B,A∪B;
(2)若BA,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的值域?yàn)?/span>,若,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案