在三棱錐A-BCD中,E,F(xiàn),G分別是AB,AC,BD的中點,若AD與BC所成的角是60°,那么角FEG為多少度?
考點:棱錐的結構特征
專題:空間角
分析:根據(jù)異面直線所成角的定義可得∠FEG為異面直線AD與BC所成的角,這樣可得∠FEG=60°.
解答: 解:如圖連接EF、EG,∵E,F(xiàn),G分別是AB,AC,BD的中點,
∴EF∥BC,EG∥AD,
又AD與BC所成的角是60°,
∴∠FEG=60°.
點評:本題考查了異面直線所成角的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內接于圓O,點D在OC的延長線上,AD是⊙O的切線,若∠B=30°,AC=3,則OD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,內外兩個橢圓的離心率相同,從外層橢圓頂點向內層橢圓引切線AC,BD,設內層橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),若直線AC與BD的斜率之積為-
1
4
,則橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}前n項和為Sn,且滿足S3=
7
2
,S6=
63
2
,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求log2a1+log2a2+log2a3+…+log2a25的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函數(shù)f﹙x﹚+g﹙x﹚的定義域;
②判斷函數(shù)f﹙x﹚+g﹙x﹚的奇偶性并說明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在招收體育特長生時,須對報名學生進行三個項目的測試,規(guī)定三項都合格者才能錄。僭O每項測試相互獨立,學生甲和乙三個項目測試合格的概率均相等•且各項測試合格的概率分別為
1
2
,
1
2
,
1
3

(1)求學生甲和乙至少有一人被錄取的概率;
(2)求學生甲測試合格的項數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(Ⅰ)若{bn}的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
(Ⅱ)若an=4n+4,試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它r(r∈N,r≥2)項的和?若存在,請求出該項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+x-2,
(Ⅰ)求曲線y=f(x)在點(1,0)處的切線的方程;
(Ⅱ)如果曲線y=f(x)的一條切線與直線y=4x-1平行,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是R上的偶函數(shù),并且在區(qū)間(0,+∞)上是增函數(shù),若f(1)=0,則滿足xf(x)>0的x的集合是
 

查看答案和解析>>

同步練習冊答案