已知不等式對于,恒成立,則實數(shù)的取值范圍(  ▲  )

A.       B.    C.       D.        

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x可以表示成一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和,若關于x的不等式ag(x)+h(2x)≥0對于x∈[1,2]恒成立,則實數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在函數(shù)f(x)=mx3-x的圖象上以點N(1,n)為切點的切線的傾斜角為
π4

(Ⅰ)求m,n的值;
(Ⅱ)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1992對于x∈[-1,3]恒成 立?如果存在,請求出最小的正整數(shù)k,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•荊州模擬)已知函數(shù)f(x)=x3+ax2+bx+c的圖象經(jīng)過原點,且在x=1處取得極值,直線y=2x+3到曲線y=f(x)在原點處的切線所成的角為45°.
(1)求f(x)的解析式;
(2)若對于任意實數(shù)α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青島一模)已知函數(shù)f(x)=
1
3
x3-x

(1)若不等式f(x)<k-2005對于x∈[-2,3]恒成立,求最小的正整數(shù)k;
(2)令函數(shù)g(x)=f(x)-
1
2
ax2+x(a≥2)
,求曲線y=g(x)在(1,g(1))處的切線與兩坐標軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在[1,+∞)上的函數(shù)f(x)=
4-|8x-12|(1≤x≤2)
1
2
f(
x
2
)(x>2)
,則(  )

查看答案和解析>>

同步練習冊答案