長(zhǎng)方體ABCD-A1B1C1D1的底面是邊長(zhǎng)為a的正方形,若在側(cè)棱AA1上至少存在一點(diǎn)E,使得∠C1EB=90°,則側(cè)棱AA1的長(zhǎng)的最小值為( 。
A、aB、2aC、3aD、4a
考點(diǎn):點(diǎn)、線(xiàn)、面間的距離計(jì)算
專(zhuān)題:空間位置關(guān)系與距離
分析:設(shè)側(cè)棱AA1的長(zhǎng)為x,A1E=t,則AE=x-t,由已知得t2-xt+a2=0,由此利用根的判別式能求出側(cè)棱AA1的長(zhǎng)的最小值.
解答: 解:設(shè)側(cè)棱AA1的長(zhǎng)為x,A1E=t,則AE=x-t,
長(zhǎng)方體ABCD-A1B1C1D1的底面是邊長(zhǎng)為a的正方形,
∠C1EB=90°,
C1E2+BE2=BC12
∴2a2+t2+a2+(x-t)2=a2+x2,
整理,得:t2-xt+a2=0,
∵在側(cè)棱AA1上至少存在一點(diǎn)E,使得∠C1EB=90°,
∴△=(-x)2-4a2≥0,
解得x≥2a.
∴側(cè)棱AA1的長(zhǎng)的最小值為2a.
故選:B.
點(diǎn)評(píng):本題考查長(zhǎng)方體的側(cè)棱長(zhǎng)的最小值的求法,是中檔題,解題時(shí)要注意根的判別式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(2α+β)+2sinβ=0,求證:tanα=3tan(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,線(xiàn)段BE,CF交于點(diǎn)P,設(shè)向量
AB
=
a
,
AC
=
b
AP
=
c
,
AF
=
2
3
a
,
AE
=
1
2
b
,則向量
c
可以表示為(  )
A、
c
=
3
4
a
+
1
2
b
B、
c
=
1
2
a
+
3
4
b
C、
c
=
1
2
a
+
1
4
b
D、
c
=
1
4
.
a
+
1
2
.
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動(dòng)點(diǎn),且滿(mǎn)足∠APB=90°.
(1)求AB中點(diǎn)R的軌跡;
(2)求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)中,離心率e=
6
3
,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線(xiàn)和原點(diǎn)的距離為
3
2

(1)求橢圓的方程;
(2)已知定點(diǎn)E(-1,0),若直線(xiàn)l:y=kx+2(k≠0)與橢圓交于C,D兩點(diǎn),是否存在k的值,使以CD為直徑的圓恰過(guò)點(diǎn)E?若存在,求出直線(xiàn)l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-m|-2|x-1|.
(1)當(dāng)m=3時(shí),求f(x)的最大值;
(2)解關(guān)于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan75°-tan15°
tan75°+tan15°
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面內(nèi),垂直于同一條直線(xiàn)的兩條直線(xiàn)平行.在空間中可以類(lèi)比得出以下一組命題:
①在空間中,垂直于同一直線(xiàn)的兩條直線(xiàn)平行;
②在空間中,垂直于同一直線(xiàn)的兩個(gè)平面平行;
③在空間中,垂直于同一平面的兩條直線(xiàn)平行;
④在空間中,垂直于同一平面的兩個(gè)平面平行其中,
正確的結(jié)論的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[0,1]時(shí),求函數(shù)f(x)=x2+(2-6a)x+3a2的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案