16.觀察下列等式:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$;1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$;1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$;…以此類推,1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{n}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$,其中n∈N*,則n=12.

分析 裂項相消,求出n,即可得出結(jié)論.

解答 解:由題意,1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{n}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$=$\frac{1}{2}$+($\frac{1}{2}-\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{4}$)+($\frac{1}{4}-\frac{1}{5}$)+($\frac{1}{5}-\frac{1}{6}$)+($\frac{1}{6}-\frac{1}{7}$)+$\frac{1}{7}$
∴n=12.
故答案為:12.

點評 本題考查類比推理,考查裂項相消方法的運用,正確運用裂項相消是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.(x2+1)(x-2)9=a0+a1(x-1)+a2(x-1)2+a3(x-1)3…+an(x-1)n,則a1+a2+a3+…+an的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)f(x)=|x-1|-2|x+1|的最大值為m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),$\frac{{{a^2}+{c^2}}}{2}+{b^2}=m$,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,AB是⊙O的切線,ADE是⊙O的割線,AC=AB,連接CD、CE,分別與⊙O交于點F,點G.
(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知四邊形ACBF內(nèi)接于圓O,F(xiàn)A,BC的延長線交于點D,且FB=FC,AB是△ABC的外接圓的直徑.
(1)求證:AD平分∠EAC;
(2)若AD=4$\sqrt{3}$,∠EAC=120°,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若a>b>0,下列命題為真命題的是( 。
A.a2<b2B.a2<abC.$\frac{a}$<1D.$\frac{1}{a}$>$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.△ABC中,A=$\frac{π}{6}$,BC=$\sqrt{3}$,則△ABC的外接圓面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.對拋物線x2=12y,下列判斷正確的是( 。
A.焦點坐標是(3,0)B.焦點坐標是(0,-3)C.準線方程是y=-3D.準線方程是x=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知1=12,2+3+4=32,3+4+5+6+7=52,…,依此規(guī)律可以得到的第n個式子為( 。
A.n+(n+1)+(n+2)+…+2n=(n-1)2B.n+(n+1)+(n+2)+…+3n=(n-1)2
C.n+(n+1)+(n+2)+…+(2n+2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2

查看答案和解析>>

同步練習冊答案