設函數(shù)h(x)=x|x|+mx+n給出下列四個命題:

①當m=0時,h(x)=0只有一個實數(shù)根;

②當n=0時,y=h(x)為偶函數(shù);

③函數(shù)y=h(x)圖象關于點(0,n)對稱;

④當m≠0,n≠0時,方程h(x)=0有兩個不等實根.

上述命題中,正確命題的序號是_________

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:上海市奉賢區(qū)2011屆高三12月調研測試數(shù)學文科試題 題型:044

設h(x)=x+,x∈[,5],其中m是不等于零的常數(shù),

(1)m=1時,直接寫出h(x)的值域

(2)求h(x)的單調遞增區(qū)間;

(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當m=1時,|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省無錫市輔仁高級中學2012屆高三第一次模擬考試數(shù)學文科試題 題型:044

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;

(Ⅲ)設f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省無錫市輔仁高級中學2012屆高三第一次模擬考試數(shù)學理科試題 題型:044

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;

(Ⅲ)設f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設h(x)=f(x)-g(x).
(1)求函數(shù)h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

同步練習冊答案