已知命題p: 方程有兩個(gè)大于-1的實(shí)數(shù)根,已知命題q:關(guān)于x的不等式的解集是R,若“p或q”與“” 同時(shí)為真命題,求實(shí)數(shù)a的取值范圍(12分)
解析試題分析:先求出p,q為真的條件,然后根據(jù)“p或q”與“” 同時(shí)為真命題可知q為假,p為真,從而得到參數(shù)a的取值范圍.
∵方程有兩個(gè)大于-1的實(shí)數(shù)根,
∴解得 即p:
∵關(guān)于x的不等式的解集是R,∴
解得,即q:,∵“P或q”與“” 同時(shí)為真命題, ∴p真q假.∴∴解得
考點(diǎn):一元二次方程根的分布,復(fù)合命題真假的判斷.
點(diǎn)評(píng):一元二次方程根的分布問(wèn)題要從四個(gè)方面來(lái)考慮,一是開(kāi)口方向,二是對(duì)稱軸,三是端點(diǎn)值,四是判別式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知命題p:方程有兩個(gè)不相等的實(shí)根;
q:不等式的解集為R;
若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)命題 是減函數(shù),命題:關(guān)于
的不等式的解集為,如果“或”為真命題,“且”為假命題,求
實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,命題:對(duì)任意,不等式恒成立;命題:存在,使得成立
(Ⅰ)若為真命題,求的取值范圍;
(Ⅱ)當(dāng),若且為假,或為真,求的取值范圍。
(Ⅲ)若且是的充分不必要條件,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 命題實(shí)數(shù)x滿足(其中),命題實(shí)數(shù)滿足
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題P:函數(shù)內(nèi)單調(diào)遞減;命題Q:曲線軸交于不同的兩點(diǎn).
如果“P\/Q”為真且“P/\Q”為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題p:f(x)=在區(qū)間(0,+∞)上是減函數(shù);命題q:不等式(x-1)2>m的解集為R.若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)m的取值范圍是。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com