(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面為正文形,PA平面ABCD,且PA=AD,E為棱PC上的一點(diǎn),PD平面ABE
(I)求證:E為PC的中點(diǎn)
(II)若N為CD中點(diǎn),M為AB上的動(dòng)點(diǎn),當(dāng)直線MN與平面ABE所成的角最大時(shí),求二面角C-EM—N的大小
解:(Ⅰ)過(guò),由

可知
四點(diǎn)共面,…………………2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171703119418.gif" style="vertical-align:middle;" />
,

∴在中,,………………………4分
∴可得EPC的中點(diǎn).……………………6分
(Ⅱ)連結(jié)
連結(jié),則為直線MN與平面ABE所成的角.
中,
最小時(shí),最大,此時(shí)
所以MAB中點(diǎn),……………………………9分

,
可知

設(shè)

.……………12分
法二(Ⅰ)建立如圖所示空間直角坐標(biāo)系,不妨設(shè),則,.………………2分
設(shè),
,…………………4分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171704679432.gif" style="vertical-align:middle;" />  ,
,
,.……………………6分
(Ⅱ)設(shè),
由(Ⅰ)知面的法向量為,
設(shè)MN與面ABE所成角為,

當(dāng)t=時(shí),最大,此時(shí)MAB中點(diǎn),…………………9分
平面NEM的法向量為 設(shè)平面CEM的法向量為
   而
    令.
,
.……………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)
已知四邊形是空間四邊形,分別是邊的中點(diǎn),求證:四邊形是平行四邊形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)分別是平面的法向量,則平面的位置關(guān)系是(   )
A.平行B.垂直C.相交但不垂直D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,平面不能用(  ) 表示.
A.平面α
B.平面AB
C.平面AC
D.平面ABCD
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線、與平面,下列命題正確的是                         (   )
A.,則 
B.,則
C.,則
D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,E、F分別是正方形的邊、的中點(diǎn),沿SE、SF、EF將它折成一個(gè)幾何體,使、D、重合,記作D,給出下列位置關(guān)系:

①SD面EFD;②SE面EFD;③DFSE;④EF面SED其中成立的有(   )
A.①與②       B.①與③       C.②與③      D.③與④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方體中,直線和直線所成的角的大小為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)如圖,在正方體ABCD —中E是AB的中點(diǎn),O是側(cè)面的中心.






C1

 
D1
 
(1)求證:OB⊥EC ;

(2)求二面角O—DE—A的大。ㄓ梅慈呛瘮(shù)表示)

O

 
B1
 
A1
 


D

 
C
 


B

 
E
 
A
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如右圖2,在二面角的棱上有,兩點(diǎn),直線分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于,若,則二面角的大小為        

查看答案和解析>>

同步練習(xí)冊(cè)答案