已知正項數(shù)列{a
n}的前n項和為S
n,且a
n和S
n滿足:4S
n=(a
n+1)
2(n=1,2,3…),
(1)求{a
n}的通項公式;
(2)設(shè)b
n=
,求{b
n}的前n項和T
n;
(3)在(2)的條件下,對任意n∈N
*,T
n>
都成立,求整數(shù)m的最大值.
分析:(1)由4S
n=(a
n+1)
2,知4S
n-1=(a
n-1+1)
2(n≥2),由此得到(a
n+a
n-1)•(a
n-a
n-1-2)=0.從而能求出{a
n}的通項公式.
(2)由(1)知b
n=
=
=
(
-
),由此利用裂項求和法能求出T
n.
(3)由(2)知T
n=
(1-
),T
n+1-T
n=
(
-
)>0,從而得到[T
n]
min=T
1=
.由此能求出任意n∈N
*,T
n>
都成立的整數(shù)m的最大值.
解答:解:(1)∵4S
n=(a
n+1)
2,①
∴4S
n-1=(a
n-1+1)
2(n≥2),②
①-②得
4(S
n-S
n-1)=(a
n+1)
2-(a
n-1+1)
2.
∴4a
n=(a
n+1)
2-(a
n-1+1)
2.
化簡得(a
n+a
n-1)•(a
n-a
n-1-2)=0.
∵a
n>0,∴a
n-a
n-1=2(n≥2).
∴{a
n}是以1為首項,2為公差的等差數(shù)列.
∴a
n=1+(n-1)•2=2n-1.
(2)b
n=
=
=
(
-
).
∴T
n=
[(1-
)+(
-)+…+(
-
)]
=
(1-
)=
.
(3)由(2)知T
n=
(1-
),
T
n+1-T
n=
(1-
)-
(1-
)
=
(
-
)>0.
∴數(shù)列{T
n}是遞增數(shù)列.
∴[T
n]
min=T
1=
.
∴
<
,
∴m<
.
∴整數(shù)m的最大值是7.
點(diǎn)評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的數(shù)列的前n項和公式的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意等價轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知正項數(shù)列{a
n}滿足:a
1=3,(2n-1)a
n+2=(2n+1)a
n-1+8n
2(n>1,n∈N
*)
(1)求證:數(shù)列
{}為等差數(shù)列,并求數(shù)列{a
n}的通項a
n.
(2)設(shè)
bn=,求數(shù)列{b
n}的前n項和為S
n,并求S
n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義:稱
為n個正數(shù)a
1,a
2,…,a
n的“均倒數(shù)”,已知正項數(shù)列{a
n}的前n項的“均倒數(shù)”為
,則
( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知正項數(shù)列a
n中,a
1=2,點(diǎn)
(,an+1)在函數(shù)y=x
2+1的圖象上,數(shù)列b
n中,點(diǎn)(b
n,T
n)在直線
y=-x+3上,其中T
n是數(shù)列b
n的前項和.(n∈N
+).
(1)求數(shù)列a
n的通項公式;
(2)求數(shù)列b
n的前n項和T
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知正項數(shù)列{a
n}滿足a
1=1,a
n+1=a
n2+2a
n(n∈N
+),令b
n=log
2(a
n+1).
(1)求證:數(shù)列{b
n}為等比數(shù)列;
(2)記T
n為數(shù)列
{}的前n項和,是否存在實數(shù)a,使得不等式
Tn<log0.5(a2-a)對?n∈N
+恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知正項數(shù)列{a
n},
Sn=(an+2)2(1)求證:{a
n}是等差數(shù)列;
(2)若
bn=an-30,求數(shù)列{b
n}的前n項和.
查看答案和解析>>