某同學(xué)參加某高校自主招生3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立.記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為

(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;

(Ⅱ)求數(shù)學(xué)期望Eξ.

答案:
解析:

  解:用表示“該生第門課程取得優(yōu)秀成績(jī)”,=1,2,3.

  由題意得

  (Ⅰ)該生至少有一門課程取得優(yōu)秀成績(jī)的概率為

  

  (Ⅱ)

  及

  

  (2)

  

  ∴

  ∴該生取得優(yōu)秀成績(jī)的課程門數(shù)的期望為。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)參加某高校自主招生3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為
4
5
,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立.記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ 0 1 2 3
pi
6
125
x y
24
125
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;
(Ⅱ) 求數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某同學(xué)參加某高校自主招生3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為
4
5
,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立.記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ 0 1 2 3
pi
6
125
x y
24
125
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;
(Ⅱ) 求數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省高考數(shù)學(xué)預(yù)測(cè)試卷(09)(解析版) 題型:解答題

某同學(xué)參加某高校自主招生3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立.記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ123
pixy
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;
(Ⅱ) 求數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省聊城市陽谷縣華陽中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某同學(xué)參加某高校自主招生3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立.記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ123
pixy
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率及求p,q的值;
(Ⅱ) 求數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案