【題目】如圖是某工廠對一批新產(chǎn)品長度(單位:mm)檢測結(jié)果的頻率分布直方圖.估計這批產(chǎn)品的中位數(shù)為( )
A.20
B.25
C.22.5
D.22.75
【答案】C
【解析】解:根據(jù)頻率分布直方圖,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位數(shù)應(yīng)在20~25內(nèi),
設(shè)中位數(shù)為x,則
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴這批產(chǎn)品的中位數(shù)是22.5.
故選:C.
【考點精析】利用頻率分布直方圖對題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 的離心率 ,橢圓上一點A到橢圓C兩焦點的距離之和為4.
(1)求橢圓C的方程;
(2)直線l與橢圓交于A,B兩點,且AB中點為 ,求直線l方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點.證明A1 , C1 , F,E四點共面,并求直線CD1與平面A1C1FE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x﹣2x .
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對所有θ∈[0, ]都成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是( )
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中a是0﹣9的某個整數(shù)
(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認(rèn)為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進(jìn)一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是圓F1:(x+1)2+y2=16上任意一點(F1是圓心),點F2與點F1關(guān)于原點對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點.
(1)求點M的軌跡C的方程;
(2)直線l經(jīng)過F2 , 與拋物線y2=4x交于A1 , A2兩點,與C交于B1 , B2兩點.當(dāng)以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C上的動點M到定點F(1,0)的距離和它到定直線x=3的距離之比是1: .
(1)求曲線C的方程;
(2)過點F(1,0)的直線l與C交于A,B兩點,當(dāng)△ABO面積為 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時,求f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com