(2013•武漢模擬)如圖,MA⊥平面ABCD,四邊形ABCD是菱形,且四邊形ADNM是平行四邊形.
(Ⅰ)求證:AC⊥BN;
(Ⅱ)當(dāng)點(diǎn)E在AB的什么位置時(shí),使得AN∥平面MEC,并加以證明.
分析:(1)要證明AC⊥BN,只要證明AC⊥平面NDB,而由已知可知AC⊥BD,則只要證出AC⊥DN,結(jié)合已知容易證明
(2)當(dāng)E為AB的中點(diǎn)時(shí),設(shè)CM與BN交于F,由已知可得AN∥EF,結(jié)合線面平行的判定定理可證
解答:證明:(1)連接BD,則AC⊥BD.
由已知MA⊥平面ABCD,且四邊形ADNM是平行四邊形可得,DN⊥平面ABCD,
∴DN⊥AC
因?yàn)镈N∩DB=D,
所以AC⊥平面NDB.
又因?yàn)锽N?平面NDB,
所以AC⊥BN;
(2)當(dāng)E為AB的中點(diǎn)時(shí),有AN∥平面MEC.
CM與BN交于F,連接EF.
由已知可得四邊形BCNM是平行四邊形,F(xiàn)是BN的中點(diǎn),
因?yàn)镋是AB的中點(diǎn),
所以AN∥EF.
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.
點(diǎn)評(píng):本題主要考查了線面垂直、線面平行的判定定理的簡(jiǎn)單應(yīng)用,體現(xiàn)了線面、面面平行于垂直關(guān)系的相互轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)過拋物線x2=2py(p>0)的焦點(diǎn)F做傾斜角為30°的直線,與拋物線交于A、B兩點(diǎn)(點(diǎn)A在y軸左側(cè)),則
|AF|
|BF|
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)已知集合A={x|x是平行四邊形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)命題“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)已知{an}是等差數(shù)列,a1+a7=-2,a3=2,則{an}的公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)設(shè)a>0且a≠1,則“函數(shù)f(x)=(2-a)x3在R上是增函數(shù)”是“函數(shù)g(x)=logax在(0,+∞)上是減函數(shù)”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案