(本小題滿分12分)直三棱柱ABC -A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點D在AB上.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)若D是AB中點,求證:AC1∥平面B1CD;
(Ⅲ)當(dāng)時,求二面角的余弦值.
18.(Ⅰ)證明:在△ABC中,因為 AB=5,AC=4,BC=3,
所以 AC2+ BC2= AB2, 所以 AC⊥BC.
因為 直三棱柱ABC-A1B1C1,所以 C C1⊥AC.
因為 BC∩AC =C,所以 AC⊥平面B B1C1C.
所以 AC⊥B1C. …………4分
(Ⅱ)證明:連結(jié)BC1,交B1C于E,連接DE.
因為 直三棱柱ABC-A1B1C1,D是AB中點,所以 側(cè)面B B1C1C為矩形,DE為△ABC1的中位線,
所以 DE// AC1.因為 DE平面B1CD, AC1平面B1CD,所以 AC1∥平面B1CD.........8分
(Ⅲ)解:由(Ⅰ)知AC⊥BC,如圖,以C為原點建立空間直角坐標(biāo)系C-xyz.則B (3, 0, 0),A (0, 4, 0),A1 (0, 4, 4),B1 (3, 0, 4).
設(shè)D (a, b, 0)(,),
因為 點D在線段AB上,且,即.
所以,,,, ,.
平面BCD的法向量為. 設(shè)平面B1 CD的法向量為,
由 ,, 得 ,
所以 ,,.所以 .
所以二面角的余弦值為. ……………12分
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com