3.已知正三棱錐S-ABC底面邊長(zhǎng)為2$\sqrt{3}$,過(guò)側(cè)棱SA與底面中心O作截面SAD,在△SAD中,若SA=AD,求側(cè)面與底面所成二面角的余弦值.

分析 推導(dǎo)出AD⊥BC,SD⊥BC,從而∠SDO是側(cè)面與底面所成二面角,由此能求出側(cè)面與底面所成二面角的余弦值.

解答 解:∵正三棱錐S-ABC底面邊長(zhǎng)為2$\sqrt{3}$,
過(guò)側(cè)棱SA與底面中心O作截面SAD,在△SAD中,SA=AD,
∴SO⊥底面ABC,D是BC中點(diǎn),
∴AD⊥BC,SD⊥BC,∴∠SDO是側(cè)面與底面所成二面角,
∵SA=AD=$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,OD=$\frac{1}{3}AD=1$,
SD=$\sqrt{S{B}^{2}-B{D}^{2}}$=$\sqrt{9-3}$=$\sqrt{6}$,
∴cos∠SDO=$\frac{OD}{SD}$=$\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
∴側(cè)面與底面所成二面角的余弦值為$\frac{\sqrt{6}}{6}$.

點(diǎn)評(píng) 本題考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.正四棱錐S-ABCD的底面邊長(zhǎng)為2,高為1,E是邊BC的中點(diǎn),動(dòng)點(diǎn)P在四棱錐表面上運(yùn)動(dòng),并且總保持PE⊥AC,則動(dòng)點(diǎn)P的軌跡的周長(zhǎng)為$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.等差數(shù)列{an}的前n項(xiàng)之和為Sn,若S10=20,S20=50,則S30=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線y=m(m>0)與y=|logax|(a>0且a≠1)的圖象交于A,B兩點(diǎn).分別過(guò)點(diǎn)A,B作垂直于x軸的直線交y=$\frac{k}{x}$(k>0)的圖象于C,D兩點(diǎn),則直線CD的斜率( 。
A.與m有關(guān)B.與a有關(guān)C.與k有關(guān)D.等于-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,△ABC與△DBC是邊長(zhǎng)均為2的等邊三角形,且所在兩平面互相垂直,EA⊥平面ABC,且EA=$\sqrt{3}$.
(1)求證:DE∥平面ABC
(2)若2$\overrightarrow{CM}$=$\overrightarrow{ME}$,求多面體DMAEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知兩點(diǎn)A(-2,0),B(2,0),直線AM,BM相交于點(diǎn)M,且這兩條直線的斜率之積為$-\frac{3}{4}$.
(1)求點(diǎn)M的軌跡方程;
(2)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P且斜率互為相反數(shù)的兩條直線分別交曲線C于Q,R,求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓M:(x-$\sqrt{3}$)2+y2=16,N(-$\sqrt{3}$,0),點(diǎn)P在圓M上,點(diǎn)Q在MP上,且點(diǎn)C滿足$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$,$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
(1)求動(dòng)點(diǎn)Q的軌跡E的方程;
(2)過(guò)x軸上一點(diǎn)D作圓O:x2+y2=1的切線l交軌跡E于A,B兩點(diǎn),求△AOB的面積的最大值和相應(yīng)的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓C過(guò)點(diǎn)M(0,-$\frac{1}{2}$),且與直線l:y=$\frac{1}{2}$相切.
(I)求圓心C的軌跡方程;
(Ⅱ)設(shè)軌跡與過(guò)點(diǎn)N(0,-1)的直線m相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA和OB的斜率之和為1,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足x2+y2=4,則函數(shù)S=x2+y2-6x-8y+25的最大值和最小值分別為( 。
A.49,9B.7,3C.$\sqrt{7}$,$\sqrt{3}$D.7,$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案