函數(shù)f(x)是偶函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=x-1,則不等式f(x)>0在[-2,2]上的解集為
 
.(用區(qū)間表示)
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出當(dāng)x∈[0,2]時(shí),解集為(1,2],再由函數(shù)的奇偶性求出當(dāng)x∈[-2,0]時(shí),解集為(1,2],即可求出不等式f(x)>0在[-2,2]上的解集.
解答: 解:當(dāng)x∈[0,2]時(shí),f(x)=x-1>0,即有x>1,解集為(1,2],
函數(shù)f(x)是偶函數(shù),所以圖象是對(duì)稱的,當(dāng)x∈[-2,0]時(shí),解集為(1,2],
綜上所述,不等式f(x)>0在[-2,2]上的解集為(1,2],
故答案為:解集為(1,2].
點(diǎn)評(píng):本題主要考察了函數(shù)奇偶性的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O:x2+y2=4的兩條弦AB,CD互相垂直,且交于點(diǎn)M(1,
2
),則AB+CD的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是一次函數(shù),滿足3f(x+1)=6x+4,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在集合{x|4-x2≥0}上的奇函數(shù)f(x)在區(qū)間[0,2]上是增函數(shù),則( 。
A、f(0)<f(-1)<f(-2)
B、f(-1)<f(-2)<f(0)
C、f(-1)<f(0)<f(-2)
D、f(-2)<f(-1)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式ax2+5x+c>0的解集為{x|
1
3
<x<
1
2
},
(Ⅰ)求a,c的值;
(Ⅱ)解不關(guān)于x的不等式ax2+(ac+b)x+bc≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-6
,若f(a)=3,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=5|x|,g(x)=ax2-x(a∈R),若f[g(1)]=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式或不等式組:
(1)
x-1>0
x+1>0
;
(2)
1-x>0
x+1>0
;
(3)-x2
1
4
;
(4)x2-x+
1
4
≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集為實(shí)數(shù)集R,若集合A={x|
x
x-1
≥0},B={x|x2<2x},則(∁RA)∩B=( 。
A、{x|0<x<1}
B、{x|0≤x<1}
C、{x|0<x≤1}
D、{x|0≤x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案