設(shè)n是自然數(shù),fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求證:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用數(shù)學(xué)歸納法證明:
fn(x)=
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶數(shù))
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n為奇數(shù))
   
證明:(1)∵fn(x)=
xn+1-x-n-1
x-x-1
,y=x+
1
x

∴yfn(x)-fn-1(x)=(x+
1
x
)×
xn+1-x-n-1
x-x-1
-
xn-x-n
x-x-1
=
xn+2-x-n-2
x-x-1
=fn+1(x)
(2)f1(x)=x+
1
x
,f2(x)=x2+1+x-2=y2-1,故命題對n=1,2成立
設(shè)n=m(m≥2,m為正整數(shù),命題成立,現(xiàn)證命題對于n=m+1成立
①m為偶數(shù),則m+1為奇數(shù),由歸納假設(shè)知,對于n=m及n=m-1,有
fm(x)=ym-
C1m-1
ym-2
+…+…+(-1)i
Cim-i
ym-2i+…+(-1)
m
2

fm-1(x)=ym-1-
C1m-1
ym-3
+…+(-1)i-1
Ci-1m-i
ym+1-2i+…+(-1)
m-2
2
C
m-2
2
m
2
y ②
∴yfm(x)-fm-1(x)=ym+1
-C1m+1-1
ym-1
+…+(-1)i
Cim-i+1
ym+1-2i+…+(-1)
m
2
C
m
2
m
2
+1
y
即命題對n=m+1成立.
②若m為奇數(shù),則m+1為偶數(shù),由歸納假設(shè)知,對于n=m及n=m-1,有
fm(x)=ym-1-
C1m-2
ym-2
+…+…+(-1)i
Cim-i
ym-2i+…+(-1)
m-1
2
C
m-1
2
m-1
2
y③
fm-1(x)=ym-1-
C1m-2
ym-3
+…+(-1)i-1
Ci-1m-i
ym+1-2i+…+(-1)
m-1
2
C
m-1
2
m-1
2

用y乘③減去④,同上合并,并注意最后一項常數(shù)項為-(-1)
m-1
2
C
m-1
2
m-1
2
=(-1)
m+1
2

于是得到y(tǒng)fm(x)-fm-1(x)=ym+1-Cm1ym-1+…+(-1)
m+1
2
,即仍有對于n=m+1,命題成立
綜上所述,知對于一切正整數(shù)n,命題成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n是自然數(shù),fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求證:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用數(shù)學(xué)歸納法證明:
fn(x)=
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶數(shù))
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n為奇數(shù))
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國高校自主招生數(shù)學(xué)模擬試卷(十六)(解析版) 題型:解答題

設(shè)n是自然數(shù),fn(x)=(x≠0,±1),令y=x+
(1)求證:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用數(shù)學(xué)歸納法證明:
fn(x)=

查看答案和解析>>

同步練習(xí)冊答案