10.已知全集U=R,集合A={x|1≤x<6},B={x|0≤log2(x-1)<3}.
(1)求A∩B,(∁UB)∪A
(2)已知C={x|2a-1<x<a+1},若C∩B=C,求實(shí)數(shù)a的取值范圍.

分析 (1)求出結(jié)合B的等價(jià)條件,結(jié)合集合的基本運(yùn)算進(jìn)行求解即可.
(2)由C∩B=C知C⊆B,討論集合C是否為空集,建立不等式關(guān)系進(jìn)行求解即可.

解答 解:(1)B={x|0≤log2(x-1)<3}={x|1≤x-1<8}={x|2≤x<9},
則A∩B={x|2≤x<6},CUB={x|x<2或x≥9},(CUB)∪A={x|x<6或x≥9}.
(2)由C∩B=C知C⊆B.
1°當(dāng)C=∅時(shí),2a-1≥a+1,則a≥2,即a≥2時(shí)C∩B=C成立,故a≥2合適
2°當(dāng)C≠∅時(shí),
有$\left\{\begin{array}{l}2a-1<a+1\\ 2a-1≥2\\ a+1≤9\end{array}\right.$成立,即$\left\{\begin{array}{l}a<2\\ a≥\frac{3}{2}\\ a≤8\end{array}\right.$,則$\frac{3}{2}≤a<2$
綜上可知:實(shí)數(shù)a的取值范圍為$a≥\frac{3}{2}$.

點(diǎn)評 本題主要考查集合的基本運(yùn)算以及集合關(guān)系的應(yīng)用,求出集合的等價(jià)條件是解決本題的關(guān)鍵.注意要進(jìn)行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.現(xiàn)有50名學(xué)生都做物理、化學(xué)實(shí)驗(yàn),如果物理實(shí)驗(yàn)做正確的有40人,化學(xué)實(shí)驗(yàn)做正確的有31人,兩種實(shí)驗(yàn)都做錯(cuò)的有4人,則兩種實(shí)驗(yàn)都做對的人數(shù)是( 。
A.27B.25C.19D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|2-3x-2x2>0},B={x|y=ln(x2-1)},則A∩B=( 。
A.(-2,-1)B.(-∞,-2)∪(1,+∞)C.(-1,$\frac{1}{2}$)D.(-2,-1)∪(l,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)F(-3,0)在以原點(diǎn)為圓心的圓O內(nèi),且過F的最短的弦長為8,
(1)求圓O的方程;
(2)過F任作一條與兩坐標(biāo)標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=(1-2i)(i+2)的實(shí)部為( 。
A.4B.1C.一2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)P是拋物線y=ax2上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P到點(diǎn)A(2,0)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為$\sqrt{5}$,則a的值為( 。
A.$\frac{1}{4}$B.4C.$±\frac{1}{4}$D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)曲線f(x)=alnx+b和曲線g(x)=sin$\frac{πx}{2}$+cx在它們的公共點(diǎn)M(1,2)處有相同的切線,則a+b+c的值為( 。
A.0B.πC.-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)F1、F2是橢圓x2+$\frac{y^2}{b^2}$=1(0<b<1)的左、右焦點(diǎn),過F1的直線l交橢圓于A,B兩點(diǎn),若|AF1|=3|F1B|,且AF2⊥x軸,則b2=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1,F(xiàn)2分別為橢圓$C:\frac{x^2}{25}+\frac{y^2}{9}=1$的左、右焦點(diǎn),點(diǎn)A∈C,點(diǎn)M的坐標(biāo)為(1,0),AM為∠F1AF2的平分線,則|AF2|=$\frac{25}{4}$或$\frac{15}{4}$.

查看答案和解析>>

同步練習(xí)冊答案